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Abstract

We present a theory for growth accounting in the presence of distortions in open

economies. In addition to domestic wedges, we include wedges derived from im-

ported intermediate inputs used in production and exports. We bring the model to the

data using administrative firm-to-firm and tax data for the universe of formal firms

from Chile between 2005 and 2022. Observed TFP growth is explained by allocative

efficiency rather than technological change. Around half of the allocative efficiency

gains are explained by international trade.
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1 Introduction

In the presence of distortions, aggregate total factor productivity (TFP) growth reflects
not only technological advancements but also allocative efficiency (AE), that is, how effi-
ciently resources are allocated across firms and households. International trade has been
argued for being an important mechanism for improving TFP but whether this happens
through technological improvements or allocative efficiency is still unclear.

To this purpose, we present a theory to perform growth accounting in the presence of
distortions in open economies. The theory builds on Baqaee and Farhi (2020) and extends
it to open economies. While we keep AE effects driven by wedges within domestic pro-
duction networks, we include wedges derived from imported intermediate inputs used
in production. These wedges might propagate downward production networks affect-
ing firms that consume intermediate inputs produced with imported goods- directly or
indirectly- which in turn might affect their sales, either to other firms, final consumers, or
exports.

Seminal works by Restuccia and Rogerson (2008) and Hsieh and Klenow (2009) have
emphasized that departures from perfect competition introduce distortions in the al-
location of production factors among firms, leading to changes in TFP that reflect not
only technological advancements but also shifts in factor allocation. However, Hsieh
and Klenow (2009) and much of the subsequent literature have focused on horizontal
economies without firm-to-firm transactions.

Firm linkages within production networks add complexity when assessing AE. Sim-
ply comparing individual firm-level wedges is insufficient for evaluating macroeconomic
inefficiencies. A more comprehensive approach, considering firm-level linkages and wedges
across the entire network, becomes necessary. As Baqaee and Farhi (2020) showed, these
wedges can accumulate downstream within production networks, even if individual firm-
level distortions are small. However, addressing this challenge requires suitable data that
accurately captures firm-to-firm connections.

We leverage an extensive transaction dataset spanning nearly two decades of the uni-
verse of formal firms operating in Chile to perform growth accounting in the presence
of distortions in open economies. We assume markups are the sole distortion and esti-
mate them using the De Loecker and Warzynski (2012) methodology. We benefit from
nearly ideal data coverage for the formal Chilean economy, including data on prices and
quantities for all transactions between firms. Our markup estimation is based on price
variation-free measures for output and material usage, which allows us to avoid the main
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critique of markup estimations using price-contaminated variables ( Bond et al. (2021) and
Doraszelski and Jaumandreu (2021)). As markups evolution will shape AE changes and
thus aggregate TFP growth, we heavily rely on the quality of our markup estimation.

Using the markup estimations, we apply the open economy growth accounting in the
presence of distortions theory to Chile. In an economy where imports are used as produc-
tion inputs, and their corresponding outputs are traded charging markups, the revenues
generated by imports will exceed their costs. Capitalizing on our granular dataset, we
dissect TFP growth components to identify its micro-drivers and separate them into do-
mestic and international-driven forces. We are able to investigate what specific industries
and firm sizes of the economy are responsible for driving TFP changes through AE and
identify what fraction of drivers are domestic and which ones come from international
trade.

Although our theoretical framework applies to any open economy, our application to
Chile provides a potential explanation for a longstanding puzzle: the stagnation of TFP
growth in Chile since the early 2010s. Our findings primarily attribute the observed TFP
growth to changes in AE rather than technological change, and perhaps more importantly,
48% of cumulative TFP growth driven by AE for the period is explained by international
trade forces. In cases where technology (the residual) accounts for most TFP growth, the
availability of granular data becomes less relevant. Moreover, in cases where interna-
tional trade forces are negligible, our proposed theoretical extension is unnecessary.

While our insights are specific to Chile, they also hold broader implications that may
apply to other countries. Chile’s macroeconomic experience mirrors global productivity
dynamics for both developed and developing economies, characterized by a surge in pro-
ductivity before the Great Recession followed by a period of stagnation until Covid.

Related Literature
The idea that markup affects a change in productivity goes back to Hall (1988) followed
by Basu and Fernald (2002). In an economy that uses imported intermediate goods, if
there is a markup, the imported intermediate input raises value added more than its input
value. However, in GDP calculations, only nominal imports (costs) are subtracted. Thus,
even if there is no change in domestic technology, an increase in the input of imported
intermediate goods mechanically increases GDP and productivity, measured as the Solow
residual.

While there is an extensive literature on theoretical frameworks to assess productiv-
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ity implications of international trade cost reductions, Melitz and Redding (2014) and
Costinot and Rodrı́guez-Clare (2014), we are unaware of attempts to provide a theoret-
ical framework that accounts for international trade shocks spread through production
networks and their effects on Allocative Efficiency and thus on aggregate TFP growth.

While Baqaee and Farhi (2019a) provide a theoretical framework that accounts for
international trade shocks spread through production networks and their effects on Al-
locative Efficiency, they rely on industry rather than firm production networks.

There are at least two insightful theoretical avenues of research that address the reallo-
cation effects of trade shocks. The first avenue, lead by Kehoe and Ruhl (2008) emphasize
that the terms of trade — the price of imports relative to the price of exports — may induce
production factors reallocation across goods and sectors, affecting output and measured
TFP. While we rely on their inside, they do not give the structure on how terms of trade
will affect aggregate TFP growth while at the same time omitting production networks
terms of trade shocks spread out.

The second research avenue relies on a range of workhorse trade models used by
Burstein and Cravino (2015) to analyze trade cost change effects on real GDP, real con-
sumption, and aggregate TFP. They find that aggregate TFP increases in response to re-
ductions in trade costs, however the models they use are not able to capture the realloca-
tion of production towards more productive producers due to trade cost changes, which
will have effects on aggregate TFP growth.

2 Theoretical Framework

To capture international trade shocks effects on aggregate TFP growth trough changes
in production factor allocations (Allocative Efficiency, AE), we extend Baqaee and Farhi
(2020) theoretical framework to open economies. While we keep AE effects driven by
wedges within domestic production networks, we include wedges derived from imported
intermediate inputs used in production. These wedges might propagate downward pro-
duction networks affecting firms that consume intermediate inputs produced with im-
ported goods- directly or indirectly- which in turn might affect their own sales, either
to other firms, final consumers, or exports. We assume that the observed data originate
from a particular data-generating process. We then provide equations to decompose and
interpret the drivers of aggregate productivity changes. To this end, we make minimal
assumptions on a general equilibrium environment.
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We define N to represent the universe of firms and X ∈ N as a subset of firms that
also export. We define production functions separately for domestic and exporting goods
within firms, where both exhibit Constant Returns to Scale (CRS) in production. Hence,
we split the same firm in two: one that produces domestic goods and one that produces
goods to be exported. The CRS production function of firm i, Fi is given by :

qi = AiFi

({
qi j

}
j∈N
,Li,Ki, IMi

)
Where qi is the total output of firm i, Ai is Hicks-neutral productivity, qi j are the inter-

mediate goods input from other j ∈ N firms. Labor (L), Capital (K), and imported inputs
(IM) are this economy’s primary production factors. Firms minimize costs given the input
prices and sell their products charging a markup (µ) over marginal cost:

pi = µi ·mci,

There is a representative household with the following utility function;

W =W
({

yi
}

i∈N

)
,

The budget constraint is expressed as:∑
i∈N

piyi =
∑

f∈{L,K}

w f L f +
∑

i∈N+X

(
1 − 1/µi

)
piqi + T

The firm’s profits go to domestic households through an income transfer of T. We
treat imports as a factor for mathematical convenience but the factor income allocated
to imports does not appear in household budget constraints as it is attributed to house-
holds abroad. Finally, the foreign demand and import price are exogenous.The Resource
constraints are expressed as:

qi = yi +
∑
j∈N

q ji

∑
i∈N+X

Li = L,
∑

i∈N+X

Ki = K,
∑

i∈N+X

IMi = IM,

General Equilibrium

Given productivity Ai, markup µi, and transfer T, exogenous foreign demand, and ex-
ogenous import prices, the general equilibrium is the set of prices pi, intermediate input
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choices qi j, factor input choices li f , output qi, and consumption choices yi, such that: (i) the
price of each good is equal to its markup multiplied by its marginal cost; (ii) households
maximize utility under budget constraints, given prices; and (iii) market clearing for all
goods and factors.

National Accounts

Nominal GDP is the sum of domestic and foreign final demand minus imports.

GDP =
∑

i∈N+X

piyi − pIMIM,

GDP shares are described by the following vector:

bi =


pi yi

GDP if i ∈ N + X

−
pIMIM
GDP if i ∈ IM

0 otherwise

A Divisia index captures the change in real variables for real output and expenditure.
The GDP deflator and real GDP are defined as follows:

d log P =
∑

i∈N+X

piyi

GDP
d log pi −

pIMIM
GDP

d log pIM,

which can be expressed in vector form using the GDP share,

d log P = b′d log p,

Where d log p is a vector of N + X + F prices. Then, real GDP growth is computed by
chaining absolute indices:

d log Y = d log GDP − d log P,

Finally, we define the aggregate factor shares and import shares as ΛL, ΛK, and ΛIM.

ΛL =
wL

GDP
, ΛK =

rK
GDP

, ΛIM =
pIMIM
GDP

.

Input-Output Objects
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The IO matrix groups together all firm-to-firm transactions in a matrix of dimensions
(N + X + F) × (N + X + F). Where N, X, and F represent the sets of firms, exporters, and
production factors, respectively. The revenue-based input-output matrix, denoted as Ω,
is a matrix where the i jth element captures the expenditure of firm i on goods produced
by firm j as a share of firm i total revenue, piqi, where qi is the physical production.

Ωi j ≡
p jqi j

piqi

While Ω reflects the share of intermediate expenditures relative to total revenue, the
cost-based input-output matrix Ω̃ describes the share of intermediate expenditures in the
firm’s total costs. Using Shepherd’s Lemma, it is possible to express Ω̃ also as the elasticity
of firm i’s marginal cost relative to firm j’s price.

Ω̃i j ≡
Value of input j used by firm i

Firm i total cost
≡

p jqi j∑N+X
j=1 p jqi j

The cost-based Leontief inverse matrix Ψ̃ accounts for both, the direct and indirect cost
exposures of every firm through an economy’s production network. Each element of Ψ̃

measures the weighted sums of all paths (steps) of length m from producer i to producer
j.

Ψ̃ ≡ (I − Ω̃)−1 = I + Ω̃ + Ω̃2 + . . .

We define cost-based Domar weights, λ̃ for firms and Λ̃ for factors1, as the interaction
of firms and factors GDP exposure (b vector) with a measure firms and factors relevance
throughout production networks Ψ̃. Cost-based Domar weights capture the impact of
firm-level cost shocks (changes in productivity or markups) on GDP.

λ̃′ ≡ b′Ψ̃

Growth Accounting

Following Baqaee and Farhi (2020) an allocation matrix X captures admissible allocation
of resources, where each of its elements Xi j = qi j/y j is firm j output share used in pro-
duction by firm i. All feasible allocations are defined by an allocation matrix X, a vector

1Denote Λ̃ f if f ∈ L,K, IM
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of productivities A, and a vector of factor supplies, F, which consists of L, K, and IM. In
particular, the equilibrium allocation yields an allocation matrix X(A,F, µ), which in turn
generates an output level ofY(A,X(A,F, µ)).

A productivity shock (d log A) and a markup shock (d logµ) effect in real GDP can
be decomposed into a pure change in technology (d log A) for a given fixed allocation
matrix X and the change in the distribution of resources allocation matrix (dX) holding
technology constant. In vector notation:

d log Y =
∂ logY
∂ log A

d log A︸            ︷︷            ︸
∆ Technology

+
∂ logY
∂X

d logX︸            ︷︷            ︸
∆ Allocative Efficiency

Firm-level shock relevance can be summarized by the idiosyncratic shock to firm i
times its Domar weight. In addition, the shock to allocations can be broken down into a)
markup changes, which will affect the relationship between marginal revenue products
of factors and its wages, and b) Factor allocations changes, which will arise as factors will
reallocate between firms as a consequence of markups changes; some firms will release
resources while others will hire more resources to respond to shocks optimally. Hence,
the above decomposition can be further decomposed, weighing firm-level technology,
markups, and factors changes by its Domar Weight.

d log Y = λ̃′ d log A︸     ︷︷     ︸
∆Technology

− λ̃′ d logµ − Λ̃′f d log Λ︸                       ︷︷                       ︸
∆ Allocative Efficiency

The traditional Solow residual weights factors by its share in aggregate income, while
the distortion-adjusted Solow residual proposed by Baqaee and Farhi (2020) weights fac-
tor changes by factor cost-based Domar weights (Λ̃). The latter is the correct strategy
to measure aggregate factors in distorted economies as due to a change in wedges, fac-
tors aggregate income share could remain unchanged. In contrast, its allocations between
firms can change, which is captured by factor cost-based Domar weights.

Proposition 1. Total Factor Productivity in open economies. The change in TFP in response to
productivity shocks, factor supply shocks, and shocks to wedges is, to a first-order can be summa-
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rized as:2.

∆ log Yt − Λ̃′t−1(∆ log Lt + ∆ log Kt)︸                                       ︷︷                                       ︸
∆ Agreggate TFP

=
∑

i∈N+X

λ̃t−1 d log Ai︸               ︷︷               ︸
∆ Tecnology

−

∑
i∈N+X

λ̃t−1 d logµi −

∑
f∈{L,K}

Λ̃t−1 d log Λ f −
(
Λ̃IM

t−1 −ΛIM
t−1

)
d log ΛIM︸                                                                              ︷︷                                                                              ︸

∆ Allocative Efficiency

+
(
Λ̃IM

t−1 −ΛIM
t−1

)
d log IM︸                     ︷︷                     ︸

∆ Import Bias

The left-hand side is the change in aggregate output discounted by factor cost-based
Domar weights weighted Labor and Capital changes; Aggregate TFP changes. The tech-
nology change is represented by the firm’s cost-based Domar weight weighted sum of
the firm-level change in technology. The Allocative Efficiency changes term summarizes
the change in firm-level markups and aggregate levels of labor and capital changes, both
weighted by their cost-based Domar weights.

In addition, the Allocative Efficiency term includes aggregated imported intermediate
goods changes weighted by the difference in importance between its cost and revenue
exposures. In an economy where imports are used as intermediate inputs and the firm
charges a markup, the revenues generated by imports exceed their costs. The last term,
import bias changes, reflects the mechanical effect of GDP is computation; since TFP is
the change in GDP minus factor contributions, and imports are considered as factor, the
imports bias accounts for the level change in Imports weighted by its network exposure
in cost minus its network exposure in revenue.

3 Data

We use data from five different sources of the Chilean IRS (Servicio de Impuestos Internos,
SII). One of the advantages of SII data is that firms and workers have a unique identifier,

2This proposition is based on Baqaee and Farhi (2019b), but we added the different proof. The main
difference is we treat imported goods as a factor and then subsequently remove them according to the GDP
definition. Proof in Appendix A
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which allows the merging of individuals and firms across data sets.
The first source used is the value-added tax form (F29), available from 1998, including

gross monthly firm sales, materials expenditures, and investment.
Second, the SII provides information from a matched employer-employee census of

Chilean firms from 2005. Specifically, firms must report their employee’s form (DJ1887)
that records all firms’ payments to individual workers: the sum of taxable wages, over-
time, bonuses, and any other labor earnings for each fiscal year. Since all legal firms
must report to the SII, the data covers the total labor force with a formal wage contract,
representing roughly 65% of employment in Chile3. For any given month, it is possi-
ble to identify the employment status of an individual worker, a measure of her average
monthly labor income in that year, and a monthly measure of total employment and the
distribution of average monthly earnings within the firm.

Third, data from the income tax form (F22) gathers yearly information on all sources
of income and expenses of a firm. This form allows computing every individual’s actual
tax payments for each year. Even though details on sales and employment are available
on this form, we use only data on capital stock for each firm/year to build perpetual
inventories using data from the monthly F22 form. The user cost of capital is obtained
by multiplying nominal capital stock by the real rental rate of capital. The real rental rate
of capital is built using publicly available data. We use the 10-year government bond
interest rate minus expected inflation plus the external financing premium. Also, we use
the capital depreciation rate from the LA-Klems database.

Fourth, data from buying and selling books (forms 3327-3328) for 2005-2014 provides
information on transactions between firms for the complete formal economy describing
the production network of the economy.

Fifth, data from electronic tax documents (invoices universe) that provide information
on each product, including its price and quantity, traded domestically or internationally
with at least one Chilean firm participant from 2014. We use it to complement the buying
and selling books to build the production network from 2014.

There is an industry identifier for each firm at the 6-digit ISIC (rev. 4) level, allowing
estimations from 9 (Chilean-specific industry classification levels) productive sectors up
to more than 800 (when using six-digit sectors).

The data is anonymized to ensure confidentiality regarding the firm’s and workers’
identities. A set of filters is applied over the raw data to obtain the final data set for the

3Central Bank of Chile (2018)
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empirical analysis. First, for the complete data set, a firm is defined as a taxpayer with
a tax ID, positive sales, positive materials, positive wage bill, and capital for any given
year. Second, firms that hire less than two employees or capital valued below US$20 a
year are dropped. Third, all variables are winzorized at 1% and 99% levels to avoid as
much measurement error as possible. These criteria generate an economy-wide yearly
firm panel for 2005-2021.

4 Aggregating TFP in the presence of markups

Following Baqaee and Farhi (2020), product market markups are the sole source of de-
viation from competitive markets, which is assumed to be a wedge. When firms charge
markups, they maximize profits at a lower output level than they would in a competi-
tive environment. In a vertical economy without firm linkages, as in Hsieh and Klenow
(2009), markups generate that firms under-produce, distorting the resource allocations.

However, in vertical economies with firm linkages, a second distortion arises. When
a firm charges a markup downstream of the production network, its buyer’s demand
for intermediate inputs is also distorted. These distortions can accumulate downstream,
distorting firms’ input demands that buy directly or indirectly to an upstream firm that
charges markups. We will rely on Chilean data to assess how production network distor-
tions shape aggregate TFP.

Markups
A precise estimation of the unique wedge becomes critical for accurately characterizing
the path of (distorted) aggregate TFP. Since De Loecker and Warzynski (2012), the lit-
erature on market power has been actively engaged in estimating markups using the
production approach. However, the production approach to markup estimation presents
challenges, particularly in estimating the production function using revenue (P · Q) in-
stead of output (Q) to recover the output elasticity of a variable input. While Bond et al.
(2021) raises concerns about using revenue, De Loecker (2021) explains that the seminal
strategy proposed in De Loecker and Warzynski (2012) addresses this issue by treating
prices as a relevant omitted variable in the production estimation process.

Given our available data, we do not intend to delve into the markup estimation debate
but to employ the best available estimation method following the production approach.
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Since price data is accessible in our dataset, we adopt a markup estimation approach
following De Loecker and Warzynski (2012)’s method without using proxy variables. A
detailed explanation of this approach is presented in Appendix B4.

We have transaction-level price data between two firms from 2014 onward, while de-
tailed firm variables are available from 2005. For this reason, we opt for a Cobb-Douglas
production function with time-invariant coefficients as our benchmark5. The main ad-
vantage of adopting this approach is that it allows us to recover the production function
coefficients by estimating the production function over the entire period for which price
data is available. Subsequently, we can use these coefficients to estimate markups right
from the start of the period.

We estimate the production function separately for each 6-digit industry (626 indus-
tries) with at least 100 observations during our sample to recover material-output elastic-
ities. Following Foster et al. (2022), we aim to permit output elasticities to vary as much
as possible within the same aggregate industry. We can estimate production functions for
97% firm-year observations at a 6-digit industry with at least 100 observations. For the
remaining 3% of firms-year observations that do not have enough data, we complement
the production function estimation at 160 sectors and 9 sectors. Appendix B provides an
overview of various moments in the evolution of markups over time.

While markup moments offer insights to assess the presence of product market power,
they can potentially lead to misleading conclusions regarding Allocative Efficiency (AE)
in two dimensions. First, markup moments do not account for the effects of firms within
production networks. A firm imposing a high markup on other firms might seem to
generate substantial inefficiencies. However, if this firm has only one downstream con-
nection, and that connection sells products to final consumers, the distortionary potential
is limited. This stands in contrast to a firm charging a similar markup level but positioned
as a more central player in the network, selling its products with markups to many other
central firms.

4Note that markup estimation is sensitive to several factors, including the parametric assumptions of
the production function, the choice of the output variable in the production function, the variable input
used to estimate markups, the methodology employed for production function estimation, control for out-
put and materials prices, the consideration of time-variant versus time-invariant output variable input
elasticity, and the level of disaggregation in the production function estimation

5By making this choice, we assume that firms’ technology, i.e., how they combine inputs to generate
output, remains constant over the period. We conduct robustness checks by considering a second-order
translog production function, time-variant coefficients, and omitting price correction coefficients. While
the levels of markups differ under these alternative assumptions, the time variations remain equivalent.
Detailed results are presented in Appendix B
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And second, it’s worth noting that market power can, in certain situations, reintroduce
efficiency. When a firm has buyer power, it can counteract the market power of its suppli-
ers by paying prices close to marginal costs, which may lead to less inefficient outcomes.
As discussed earlier, the appropriate approach to assess markup AE effects involves ex-
amining how markups accumulate throughout production networks while considering
the full spectrum of firm-to-firm linkages.

A first step towards explaining the aggregate efficiency effects of markups, though
limited, involves investigating the composition effects behind the average markup growth6.

This analysis entails breaking down the average markup growth into within and be-
tween components. The within-component represents how the average increase in markups
is influenced by the growth of markups themselves, all while keeping firm size constant.
Conversely, the between-component sheds light on how changes in the relative sizes of
firms impact average markup growth while maintaining markup levels at a constant
level. We remain agnostic about the correct way to decompose markup growth. Still,
As shown in Figure 1, the predominant factor driving average markup growth is the be-
tween component (similar findings have been reported for US large firms by Baqaee and
Farhi (2020) and De Loecker et al. (2020)).

Figure 1: Within-Between firm markup decomposition

This observation implies that a composition effect predominantly explains markup

6 ∆ log
1∑

i λ̂it
1
µit︸           ︷︷           ︸

Harmonic Sales-Weighted Average

=

∑
i λ̂it

1
µit

∆ logµit∑
i λ̂it

1
µit︸               ︷︷               ︸

Within

+ Residual︸      ︷︷      ︸
Between
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changes, suggesting that the average markup is increasing because of changes in the rel-
ative size of firms rather than markup increases. As we will elucidate in the subsequent
discussion, this effect has implications for the evolution of Allocative Efficiency.

Production Networks exposure to imported inputs
To accurately capture the effects of markups on TFP growth, we estimate the Proposi-
tion 1 equation. Before delving into the estimation procedure, it’s worth highlighting two
factors. First, the analysis of production networks adds information because shocks to
one or a few high-cost-based Domar weights firms can trigger widespread repercussions
through the network. As demonstrated in Figure 2 Panel A, the distribution of cost-based
Domar weights exhibits a small right tail that remains relatively stable over the study pe-
riod. While Baqaee and Farhi (2020) acknowledges this importance, its theoretical frame-
work is primarily designed for closed economies.

Second, our analysis incorporates international trade. It recognizes that firms are ex-
posed to shocks associated with imported intermediate inputs, both directly and indi-
rectly. This exposure occurs when firms procure materials from other firms upstream that
have directly or indirectly obtained production inputs from international markets. As
shown in Figure 2 Panel B, while around half of firms do not import inputs directly, only
4% of firms are not exposed to international trade when accounting for direct and indirect
exposure.

Figure 2: Production network with international trade facts

Panel A. Cost-based DW distribution Panel B. Imports cost exposure

Estimation Procedure
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The estimation procedure for the Proposition 1 equation can be summarized in two steps.
In the first step, we use data on all firm-to-firm transactions and factor expenditures to
build, annually, each element of the cost-based input-output matrix denoted by Ω̃. Specif-
ically, we compute the denominator of each element (indexed by i j) by summing a firm’s
purchases from all its suppliers, its wage bill, and its capital level multiplied by its rele-
vant user cost rental rate of capital. For the first N elements corresponding to domestic
firm-to-firm transactions, the numerator is calculated as the value flow of transactions
between firm i and firm j. The numerator is set to zero for the subsequent X elements
of exporting firms. The last three elements of the matrix have wage bill, capital expendi-
tures, and imported materials as their numerators.

In the second step, we proceed to compute cost-based Domar weights. This involves
two sub-components. The first sub-component is the cost-based Leontief inverse (Ψ̃). The
second sub-component comprises the b vector. Each element of this vector represents the
final consumption of firms and is computed by subtracting intermediate sales (sales to
other firms recorded in the revenue-based IO matrix) from a firm’s total sales. The first N
elements of the b vector contain domestic sales, while the subsequent X has each firm’s
exported value. Combining both sub-components, we compute the cost-based Domar
weight (Λ̃) by multiplying the transpose of the b vector with the revenue-based Leontief
inverse (Ψ̃). The technology term is then built as a residual by substracting AE and Im-
port Bias from d log TFP.

Results
Figure 3 displays each component of the distortion-adjusted Solow residual for the Chilean
economy from 2005 to 2021. In line with results from the Chilean Central Bank7, the evo-
lution of TFP, measured using the distorted Solow residual (solid blue line), exhibited
growth from the early 2000s to 2010. Subsequently, TFP growth stagnated until 2015 and
has experienced a gradual decline since.

The growth in TFP is primarily driven by resource allocation, measured through Al-
locative Efficiency (solid red line), where the cumulative growth surpasses TFP growth.
However, TFP itself has been adversely affected by a continuous and smooth decline in
Technology (dashed gold line). Although the technology term is a residual, its time evo-
lution aligns with data on Research and Development (R&D) expenditure as reported by
OECD (2023), indicating relatively low and decreasing levels of R&D spending as a per-

7Central Bank of Chile (2021)
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centage of GDP in the country. In Appendix C, we present a robustness of Figure 3 using
a different estimation strategy for markups. We also showcase its closed economy version
and compare it to results replicating Baqaee and Farhi (2020) strategies with Chilean data.

Figure 3: Distorted Solow residual decomposition
Percentage growth relative to 2005 levels

We conducted two unpackings to describe TFP growth drivers further based on Al-
locative Efficiency (AE). First, we break down AE into domestic and international trade
drivers, distinguishing between exports and imports. We extend the notation to encom-
pass the import bias within the AE term, treating it as if it were part of the AE component.
Second, we further unpack AE into markup-related drivers versus factor-related drivers.

Figure 4 Panel A reveals that domestic factors explain 52% of the cumulative AE
growth up to 2021, while exports and imports contribute equally to the remaining 48%
(24% each). Simultaneously, Figure 4, Panel B illustrates that markups and factor al-
locations equally account for the cumulated AE growth. Up to 2010, factor allocations
predominantly explained AE movements, with markups taking over for the subsequent
years from 2010 to 2013. Both components have remained relatively stable since 2013.

∆ Allocative Efficiency = −
∑
i∈N

λ̃t−1 d logµi −

∑
f∈{LD,KD}

Λ̃D
t−1d log Λ f︸                                              ︷︷                                              ︸

Domestic

(1)

−

∑
i∈X

λ̃X
t−1 d logµi −

∑
f∈{Lx,Kx}

Λ̃X
t−1d log Λ f︸                                             ︷︷                                             ︸

Exports
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−

(
Λ̃IM

t−1 −ΛIM
t−1

)
d log ΛIM +

(
Λ̃IM

t−1 −ΛIM
t−1

)
d log IM︸                                                          ︷︷                                                          ︸

Imports

Figure 4: Allocative Efficiency

Panel A. Domestic vs. International Trade Panel B. Factors vs. Markups

Next, we compare the domestic and international trade components of AE. Figure
5 Panel A illustrates the evolution of factors explaining changes in AE. The cumulative
growth of AE factors is primarily dominated by factors used to produce domestically
traded products (65%), with the remainder explained by imported factors and factors
used in producing exported goods. Similarly, the cumulative contribution of markups
to AE is mainly driven by markups charged in domestically traded goods, representing
64%, while the remaining share is attributed to markups on exported goods.
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Figure 5: Allocative Efficiency components: Domestic vs. International Trade

Panel A. Factors Panel B. Markups

The granularity of our dataset allows us to delve even deeper into the breakdown of
AE, specifically dissecting its industry-level drivers. We leverage industry classifications
using 9 categories to analyze each industry’s contribution to the dynamics of AE. The
markup component of AE is computed at the firm level. We aggregate these firm-level
markup changes to derive industry-level insights by interacting them with their respec-
tive Domar Weights. To unpack factors, we follow Equation 2:

w f Ft

gdpt
−

w f Ft−1

gdpt−1
=

9∑
i=1

w f Fi
t

gdpt
−

w f Fi
t−1

gdpt−1
(2)

dΛF =

9∑
i=1

dλi
F

dΛF

ΛF,t−1
=

9∑
i=1

dλi
F

ΛF,t−1

The cumulative growth of AE is predominantly attributed to Tradable sectors, as illus-
trated in Figure 6, with Agriculture, Manufacturing, and Mining having the most promi-
nent contributions, especially the former with the highest contribution. Industries related
to services, including Transport services, contribute positively to changes in AE. How-
ever, Energy, Construction, Retail, and Wholesale sectors exhibit negative contributions.
The negative impact in these sectors is primarily driven by domestic forces, as highlighted
in Figure 7. Domestic forces are the primary drivers for sectors that are making positive
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contributions to AE. In addition to domestic factors, international trade forces also play a
role, explaining 25% of Agriculture, 38% of Mining, and 17% of Manufacturing.

Figure 6: Cumulative Allocative Efficiency by industry

The contributions vary across industries when opening AE components into domestic
and international trade, as well as factors and markups. International trade markups, for
instance, are predominantly influenced by the Mining sector, accounting for 82%. Con-
versely, domestic markups are positively influenced by Services and Mining in equal pro-
portions. However, they are negatively influenced by the Construction and Retail and
Wholesale sectors, with the former making the highest negative contribution to AE at 6
percentage points.
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Figure 7: Cumulative Allocative Efficiency by industry: Domestic vs. International Trade

Panel A. Domestic Panel B. International Trade

20



Figure 8: Cumulative Allocative Efficiency components by industry: Domestic vs.
International Trade

Panel A. Domestic Factors Panel B. Domestic Markup

Panel C. International Trade Factors Panel D. International Trade Markups

We finally analyze AE based on firm size, using workers’ headcount percentiles as
the criterion. As depicted in Figure 9, most of the contribution to AE comes from firms
above the 95th percentile. Figure 10 reveals that 67% of the contribution stems from the
domestic production of large firms, while 27% is attributed to the international trade-
driven forces of these same large firms. The remaining 6% is explained by both domestic
and international forces pertaining to firms below the 95th percentile of headcounts of
workers.
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Figure 9: Cumulative Allocative Efficiency by Size

Figure 10: Cumulative Allocative Efficiency by Size: Domestic vs. International Trade

Panel A. Domestic Panel B. Trade

[SECTION FINAL REMARKS MISSING]

5 Conclusion

We extend Baqaee and Farhi (2020) theoretical framework to perform growth accounting
in the presence of distortions within production networks in open economies. In addition
to domestically driven wedges, we include wedges derived from imported intermediate
inputs used in production. We bring this model to the data leveraging on a extensive
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transaction dataset spanning nearly two decades of the universe of formal firms operating
in Chile.

Although our theoretical framework applies to any open economy, our application to
Chile provides a potential explanation for a longstanding puzzle: the stagnation of TFP
growth in Chile since the early 2010s. Our findings primarily attribute the observed TFP
growth to changes in Allocative Efficiency (AE) rather than technological change, and
perhaps more importantly, 48% of cumulative TFP growth driven by AE for the period is
explained by international trade forces.

While our insights are specific to Chile, they also hold broader implications that may
apply to other countries. Chile’s macroeconomic experience mirrors global productivity
dynamics for both developed and developing economies, characterized by a surge in
productivity before the Great Recession followed by a period of stagnation until Covid.
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Appendix

A Proof of proposition 1

Proof. We start from the price equation; for all i ∈ N + X

d log pi = −d log Ai + d logµi +
∑
j∈N

Ω̃i jd log pi j +
∑

f∈L,K,IM

Ω̃i f d log w f ,

In matrix notation, we have

d log p = (I − Ω̃(N+X)×(N+X))−1
[
−d log A + d logµ + Ω̃(N+X)×Fd log w f

]
= −(I − Ω̃(N+X)×(N+X))−1[d log A − d logµ] + (I − Ω̃(N+X)×(N+X))−1Ω̃(N+X)×Fd log w f

where Ω̃(N+X)×(N+X) is the square matrix extracted for the first (N + X)× (N + X) of the cost-
based IO matrix, Ω̃. From the property of inverse matrix , (I − Ω̃(N+X)×(N+X))−1 is equal to
the first (N + X) matrix extracted from cost-based Leontief inverse matrix, Ψ̃. Therefore,
we could express

d log pi = −
∑

j

Ψ̃i j[d log A j − d logµ j] +
∑

f∈L,K,IM

Ψ̃i f d log w f ,

= −
∑

j

Ψ̃i j[d log A j − d logµ j] +
∑

f∈L,K,IM

Ψ̃i f

(
d log Λ f − d log L f

)
using the definition of GDP deflator, we know

d log P =
∑

i∈N+X

piyi

GDP
d log pi −

pIMIM
GDP

d log pIM

Therefore,

d log P = b′d log p

=
∑

i∈N+X

λ̃i
(
d log A − d logµ

)
+

∑
f∈L,K,IM

Λ̃ f w f −ΛIMd log pIM,

=
∑

i∈N+X

λ̃i
(
d log A − d logµ

)
+

∑
f∈L,K,IM

Λ̃ f

(
d log Λ f − d log L f

)
−ΛIM (

d log ΛIM − d log IM
)
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Since we know d log Y = d log GDP − d log P and nominal GDP is numeraire,

d log Y = d log GDP − d log P,

= −

− ∑
i∈N+X

λ̃i
(
d log A − d logµ

)
+

∑
f∈L,K,IM

Λ̃ f

(
d log Λ f − d log L f

)
−ΛIM (

d log ΛIM − d log IM
) ,

= −
∑

i∈N+X

λ̃id log A +
∑

i∈N+X

λ̃id logµ +
∑

f∈L,K,IM

Λ̃ f

(
d log Λ f − d log L f

)
−ΛIM (

d log ΛIM − d log IM
)

Following to Baqaee and Farhi (2020), define distortion-adjusted TFP as

d log TFP = d log Y −
∑
f∈L,K

Λ̃ f d log L f

Therefore, we have

d log TFP = d log Y −
∑
f∈L,K

Λ̃ f d log L f ,

= −
∑

i∈N+X

λ̃id log A +
∑

i∈N+X

λ̃id logµ −
∑
f∈L,K

Λ̃ f d log Λ f −
(
Λ̃IM −ΛIM

) (
d log ΛIM

)
+

(
Λ̃IM −ΛIM

)
d log IM

, which is the desired result. �

B Markup estimation strategy and results

Estimation strategy
Our chosen benchmark estimation strategy for production functions is output-based,

providing several advantages. The primary benefit of utilizing output-based produc-
tion functions lies in recovering the markup associated with materials. This flexibility in
assessing intermediate inputs, in contrast to labor (the other input used for markup es-
timation), enables better identification of markups, as it reduces potential frictions that
may result in a wedge between the marginal product and the input price. An illustra-
tive example is the absence or lower magnitude of hiring or firing costs associated with
materials compared to labor.
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Consequently, we adopt a Cobb-Douglas production function with three factors:

qit = Ait + βl lit + βk kit + βm + εit (3)

From the cost minimization problem faced by firm i, we can define markup (µ) as the
price over the marginal cost:

µit =
θV

it

sV
it

(4)

The markup measure relies on two key elements: the variable input share (sV
it ), typi-

cally available in the data, and the output elasticity of a variable input (θV
it ). Estimating the

output elasticity of a variable input represents the principal challenge in this approach.
Importantly, this methodology does not necessitate any assumptions regarding the de-
mand structure or competitive dynamics. We assume that intermediate inputs are the
most variable input in production, allowing us to estimate the markup using the output
elasticity and the share of materials. Consequently, θM

it can be calculated as the derivative
of the production function with respect to m:

θM
it =

∂qit

∂mit
= βm (5)

To ensure parameter identification, we will draw upon Ackerberg et al. (2015). The
sequence of decisions required for identification proceeds as follows: Capital is a state
variable determined at period t− 1. Labor can be selected between t− 1 and t, but always
after the capital decision and before the materials decision. While it is acknowledged that
demand-side shocks can potentially impact markup measures (Doraszelski and Jauman-
dreu (2021)), addressing these concerns goes beyond the scope of this work.

Data ussage
We start our data analysis by obtaining firm accounting variables from IRS regis-

ters. The level of capital is derived using the perpetual inventory method, while worker
headcounts are directly observed from the data. Similarly, quantities produced and the
amount of intermediate inputs are directly collected by the IRS. However, due to our as-
sumption of a uniform markup across firms and the consolidation of all materials used,
it is necessary to create aggregated firm-level quantity produced and material usage in-
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dices.
To achieve this, we construct firm-level output and intermediate goods input price

indexes, leveraging the richness of invoice-level price information available. For every
formal firm in Chile, we have records of all the goods a firm sells and all the goods it pur-
chases as intermediate inputs. This comprehensive data allows us to generate quantity
indices for both aggregate production and aggregate intermediate goods inputs. Price
indices for output and intermediate inputs are established using standard Tornqvist in-
dices. We selected the year 2014 as the base year for constructing our price indices due
to it being the first year in which we observed prices for firm-to-firm transactions. This
method is widely recognized for estimating aggregate production functions at the firm or
plant level when price data is accessible (Dhyne et al. (2022) and De Roux et al. (2021)).

To maintain consistency in our approach, we compute firm-specific annual weighted
average prices (Pigt) for each product (g) sold by firm i during year t. Subsequently, we
construct firm-specific price indices (∆Pit) for products observed in consecutive years us-
ing the product-level weighted average price and the share of the product present in both
year t − 1 and year t:

∆ log Pit =
∑

g

sigt + sigt−1

2
∆ log(Pigt) (6)

sigt represents the revenue share of product g for firm i at time t.
Consequently, we utilize the following output value for estimating the production

function:

qit =
Revenueit

Pit
(7)

A similar procedure is applied to materials, ensuring that the measure for materials
used in the production function estimation is also free from price variation 8:

mit ≈
Material expenditureit

PM
it

(8)

Results
We conduct separate production function estimations for every 626 industries at the 6-
digit level present on the IRS records. Our sample selection is contingent upon having a

8We have set the base year as 2014, when price data will be available for both input and output prices.
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minimum of 100 observations in each sector. Building on the approach outlined in Foster
et al. (2022), our objective is to allow output elasticities to exhibit as much variation as
possible within the same aggregate industry.

We successfully estimate production functions for 97% of firm-year observations within
the 6-digit industries that meet the minimum data requirement. However, for the remain-
ing 3% of firm-year observations, where data is insufficient, we extend our production
function estimation to 160 sectors and 9 sectors.

Our analysis commences with examining the returns to scale obtained from our bench-
mark estimation, as illustrated in Figure 11.There is a predominant presence of constant
returns to scale, with a slight inclination towards increasing returns to scale.

Figure 11: Returns to Scale

In Table 1, we present the mean material-output elasticities derived from production
functions estimated across a range of industry levels, from 6-digit to 1-digit industries.
On average, the elasticity increases as we estimate the production function at more finely
disaggregated industry levels.
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Table 1: Material-Output elasticities by granular of estimation

6 digits 3 digits 2 digits 1 digit

Agriculture 0.683 0.666 0.664 0.639

Mining 0.610 0.593 0.593 0.624

Manufacturing 0.622 0.620 0.624 0.593

Energy 0.575 0.599 0.612 0.603

Construction 0.615 0.576 0.576 0.583

Retail and Wholesale 0.662 0.620 0.624 0.651

Transportation and ICTs 0.610 0.619 0.619 0.540

Financial and Real Estate Services 0.525 0.527 0.527 0.561

Other Services 0.588 0.566 0.552 0.494

In addition, we calculate time-varying elasticities for the period in which we can ob-
tain price-free measures, and we present the median of these elasticities in Figure 12.
Despite some fluctuations observed in the data, it is noteworthy that the time-varying
elasticities tend to revolve around the values of the time-invariant elasticities for the over-
lapping period where both sets of measurements are available.

Figure 12: Time-varying elasticities

Material shares and median elasticities over time are displayed in Figure 13. While the
production functions parameters remain time-invariant, note that the composition of the
sample of firms changes over time, leading to variations in the median of material-output
elasticities.
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Figure 13: Markup components Median

Panel A: Material-Output Elasticities Panel B: Material share

We document the evolution of markup moments over time in Figure 14. Additionally,
we illustrate sector and labor heterogeneity in Figure 15.

Figure 14: Markup evolution in time

Panel A: Markups moments Panel B: Markup different weights
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Figure 15: Markup heterogeneity by sector and firm size

Panel A: Markups by sector Panel B: Markup by firm size

Note: Labor headcounts percentiles describe firm size.

Figure 16 displays distributions of various markup estimation strategies. These strate-
gies are categorized based on the choice of functional form, differentiating between Cobb-
Douglas (C-D) and Translog (TL) models. Furthermore, we classify them according to
whether they are output-based or value-added-based production functions, and we dis-
tinguish between labor markups and materials markups. The sensitivity of markups to
the chosen estimation approach is evident. However, our benchmark strategy is selected
to optimize identification following the conditions outlined in De Loecker and Warzynski
(2012). This choice is made while considering the available price-variation-free measures
to achieve the best possible identification.
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Figure 16: Different Markup Strategies distribution for 2018

Table 2: Markups different strategies covariance matrix

Benchmark Output PF Output PF VA PF VA PF

TL Materials CD Labor TL Labor CD Labor

Benchmark 1.000

Output PF TL Materials 0.835 1.000

Output PF C-D Labor -0.085 -0.071 1.000

VA PF TL Labor 0.006 0.117 0.624 1.000

VA PF C-D Labor 0.099 0.149 0.606 0.927 1.000

C TFP robustness

In Figure 17, we compare our Benchmark estimation with an alternative one using labor
markups instead of material markups, both derived from the same production function.
Despite the consistent direction of Allocative Efficiency (AE) growth in both cases, the
use of labor markups results in an AE component level more than twice as high as that
obtained using material markups. This leads to a nearly 50% decrease in the technology
level over the same time period, which is challenging to rationalize. One plausible ex-
planation is that, as labor is less variable than materials, markups from labor may not be
well-identified, potentially invalidating their estimation.
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Figure 17: TFP with different markup strategy

Panel A: TFP Benchmark Panel B: TFP: Labor markups

Figure 18, Panel A presents the results of Total Factor Productivity (TFP) in a closed
economy, while Panel B illustrates the TFP evolution within a production Input-Output
structure across nine industries. In line with the findings of Baqaee and Farhi (2020), a
significant portion of factor reallocation occurs between firms within sectors, resulting
in limited reallocation between sectors. This suggests that TFP is primarily driven by
the residual term, representing technological changes. This underscores the importance
of having appropriate data to describe TFP changes at the firm level rather than using
industry level data.
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Figure 18: Markup heterogeneity by sector and firm size

Panel A: Closed Economy Panel B: TFP: Closed economy 9 sectors IO
structure
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