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Abstract

We investigate the role of multiproduct firms in shaping resource misallocation
and its impact on aggregate total factor productivity (TFP) growth. Using adminis-
trative data on product transactions between all formal Chilean firms, we provide
evidence that demand shocks to one product affect the production of other prod-
ucts within the same firm, suggesting that firms engage in joint production. We de-
velop a framework to measure resource misallocation in production networks with
joint production, deriving sufficient statistics to quantify these effects. Applying the
framework to Chile, we find that changes in allocative efficiency explain 86% of the
observed aggregate TFP growth for the 2016-2022 period. Ignoring joint production

leads to overestimation of changes in allocative efficiency.

“We are deeply indebted to David Baqaee, Ariel Burstein, Hugo Hopenhayn, Michael Rubens, and
John Asker for excellent guidance. Jonathan Vogel, Oleg Itskhoki, Andy Atkeson, Lee Ohanian, Saki Bigio,
Pablo Fajgelbaum, Fernando Alvarez, Javier Cravino, Colin Hottman, Aaron Flaaen, Xiang Ding, Yuhei
Miyauchi, Federico Huneeus, and Kosuke Aoki provided valuable comments. We thank seminar partici-
pants at Society for Economic Dynamics Winter Meeting, the Third Global Economic Network Conference,
the GSE-OSIPP-ISER Joint Conference, SEA 94th Annual Meeting, the Midwest Macroeconomics Meeting,
Penn State University, Keio Univesity, Waseda University, Hitotsubashi University, California State Univer-
sity Long Beach, the Federal Reserve Board, 31st Conference on Computing in Economics and Finance and
the Central Bank of Chile. The views expressed are those of the authors and do not necessarily represent
the views of the Central Bank of Chile or its board members.



1 Introduction

Resource misallocation across heterogeneous producers has been recognized as a driver
of aggregate total factor productivity (TFP) differences across countries and over time. To
quantify the extent of misallocation, recent literature has made extensive use of granular
tirm-level data.

However, despite its emphasis on micro data, this literature typically ignores the fact
that most firms sell multiple products. For example, 75% of formal firms in Chile report
selling multiple products, and these firms collectively account for 99% of all firm-to-firm
transactions in Chilean tax data. The ubiquity of multi-product firms introduces new
challenges to understanding resource allocation. Specifically, researchers must consider
how the allocation of resources across products within firms affects allocative efficiency
and aggregate TFP. Measuring resource allocation within firms often requires determin-
ing how to assign inputs to specific outputs.

The literature on multi-product firms often assumes product line independence (Klette
and Kortum (2004); Bernard et al. (2011); De Loecker et al. (2016); Hottman et al. (2016);
Mayer et al. (2021)). If firms are collections of independent products, the challenge is
reduced to a measurement problem, and existing theories for single-product firms can
be applied by treating different products as if they are separate firms. However, firms
often simultaneously produce multiple outputs using shared inputs, making it impossible
to assign inputs to specific outputs. Consider an oil refinery that produces diesel and
gasoline concurrently: the inputs—crude oil, labor, and capital—are used to produce both
outputs and cannot be accounted for separately.

How do multi-product firms with non-separable production technologies affect the
measurement of the extent of resource misallocation? We model firms’ technology via
joint non-separable production functions that map bundles of inputs into bundles of mul-
tiple outputs. This approach eliminates the need to define individual product-level pro-
duction functions. The joint production function describes the firm’s flexibility in adjust-
ing its product mix, which then determines the importance of resource allocation within
the firm.

We generalize previous work to accommodate multi-product firms with joint pro-
duction technologies. We provide sufficient statistics to measure changes in allocative
efficiency using ex-post data. Our framework is general enough to accommodate firm-
to-firm linkages. We validate and implement our framework using a granular firm-to-

firm transactions database for Chile. We show that the extent of resource misallocation is



overstated if we abstract from joint production, as is standard practice in the literature.
While our primary focus is ex-post analysis, we also develop a complementary paramet-
ric framework to understand ex-ante counterfactuals, like the gains from eliminating all
distortions, taking into account joint production technologies.

We first describe the theoretical contributions of the paper, then turning to our em-
pirical validation and application. In our model, products within firms can be under-
or overproduced because they face different wedges (e.g., markups). Loosely speaking,
products with relatively high wedges are underproduced. However, since firms interact
with one another, the relevant wedges that affect resource allocation and, hence, aggre-
gate TFP are not just the firm’s own wedges, but the entire chain of cumulative wedges
leading from final demand to the production of the product.

The impact of changes in these cumulative wedges on resource misallocation depends
on how easily firms can adjust their product mix. Consider again the oil refinery exam-
ple. If the oil refinery raises the markup on gasoline, thereby lowering its demand, it
cannot redirect production resources toward diesel because the production technology
yields gasoline and diesel in nearly fixed proportions from crude oil. This technological
constraint limits the firm’s ability to reallocate resources in response to demand changes
and hence limits the extent of misallocation within the firm. Therefore, joint production
technology can attenuate the extent of resource misallocation and its contribution to ag-
gregate TFD.

To quantify the extent of resource misallocation in the presence of joint production,
we develop a sufficient statistics approach. Our approach relies on observed changes
in product-level prices within the firm. Theoretically, these price movements, net of
markups, trace out the production possibility frontier, whose slope captures each firms’
technological constraints when adjusting their product mix. When firms have flexibility
to adjust their product mix, changes in prices net of markups will be small as firms can
easily substitute production between products.

The covariance of relative price changes with cumulative wedges at the product level
captures the attenuation of resource misallocation due to joint production technology. In-
tuitively, if prices rise for products with high (cumulative) wedges, then the scope for
reallocation is limited. Rather than directly estimating the production possibility frontier,
our approach infers its shape from observed price changes, providing a way to quantify
misallocation without imposing parametric assumptions about firms’ production tech-
nologies.



The growth-accounting formula we develop generalizes previous approaches: it col-
lapses to the Bagaee and Farhi (2020) growth accounting result under the single-product
tirm assumption and to the Hulten (1978) benchmark under perfect competition.

To implement our framework, we use administrative firm-to-firm transactions data
from the Chilean Internal Revenue Service. The dataset contains product-level prices,
tirm-product input-output linkages, and balance sheet variables — enough to construct
our sufficient statistics.

We first validate joint production technology in the data. We examine whether the
standard assumption in the literature — that firms operate as independent single-product
lines — holds. We find that demand shocks to one product significantly affect the produc-
tion of other products within the same firm, indicating that firms employ joint production
technology. In fact, we find that a negative demand shock to a firm’s main product re-
duces the production of alternative products, as predicted by our framework.

Having established the presence of joint production, we implement our sufficient
statistics to conduct a growth accounting exercise. We find that changes in allocative
efficiency explain 86% of TFP growth in Chile from 2016 to 2022. Ignoring joint produc-
tion provides a misleading assessment and substantially overestimates the importance of
resource reallocation.

We attribute this finding to multi-product firms face that constraints when they adjust
their product mix. These constraints limit the scope for product-level resource realloca-
tion within firms, and this affects allocative efficiency and aggregate TFP growth.

As mentioned above, our primary focus is ex-post analysis that employs observed
data. However, we also develop a complementary ex-ante approach that enables coun-
terfactual analysis by imposing a parametric structure for production technologies and
requires knowledge of the curvature in the firm’s production possibility frontier. We pro-
vide an analytical characterization of the extent of misallocation, measured as the distance
to the Pareto-efficient frontier, for multi-product firms with joint production. Consistent
with our earlier finding that joint production constrains reallocation, we find that assum-
ing separable production technologies overestimates the extent of resource misallocation

caused by a given set of wedges.

Related Literature

Our paper contributes to and connects different strands of the literature. We incorporate

multiproduct firms and joint production to extend the literature on misallocation. The



work by Restuccia and Rogerson (2008) and Hsieh and Klenow (2009) show the potential
importance of resource misallocation in accounting for TFP differences. We contribute
to this literature by developing a framework that allows for multi-product firms (Bernard
etal. (2010, 2011); Mayer et al. (2014); De Loecker et al. (2016); Hottman et al. (2016); Mayer
etal. (2021); Wang and Yang (2023)) and joint production (Powell and Gruen (1968); Diew-
ert (1971); Lau (1972); Hall (1973, 1988); Boehm and Oberfield (2023); Carrillo et al. (2023);
Ding (2023)) and quantifying the impact of resource misallocation.

Recent work has emphasized the need to take into account input-output linkages
when quantifying the extent of these losses (Baqaee and Farhi (2020); Bigio and La’O
(2020)). Ouwur theory provides a flexible framework that allows for arbitrary production
structures, including input-output networks while incorporating joint production, and it
enables the quantification of these effects. !

Our theory provides a tool for growth accounting (Solow (1957); Hulten (1978); Basu
and Fernald (2002); Petrin and Levinsohn (2012); Baqaee and Farhi (2020); Baqaee et al.
(2023)) that decomposes aggregate TFP growth into technology and allocative efficiency
under joint production in networks and generalizes existing methods to consider multi-
product firms.

Our empirical application uses Chile’s comprehensive product-level transaction database
to quantify misallocation. This approach contrasts with the prior literature on production
networks and misallocation, which typically uses industry-level input-output table. For
example, Baqaee and Farhi (2020) impute US Compustat data using an industry-level
input-output table. Finally, Burstein et al. (2024) uses the same dataset as ours but com-
plements our work by analyzing misallocations that arise from different buyers receiving
varying prices for the same product. 2

Lastly our empirical strategy is related to the literature on shock transmission between
tirms. While much of this literature focuses on how supply shocks propagate down-
stream across firms (Boehm et al. (2019); Carvalho et al. (2020); Fujiy et al. (2022); Bai et al.
(2024)) using the granular a firm-to-firm transaction dataset, our empirical strategy in-
stead analyzes how external demand shocks transmit within firms across their products.
We compare our results with existing studies that examine within-firm spillovers of de-
mand shocks (Giroud and Mueller (2019); Almunia et al. (2021); Ding (2023)). This work

'Our work is also related to the work of Liu (2019) and Déavila and Schaab (2023), which analyzed the
effects of misallocation in input-output linkages on welfare.

2Using a theoretical model grounded in Belgian firm-to-firm transaction data, Kikkawa (2022) examines
firm pair-specific markups.



is related to the literature on production function estimation for multiproduct firms. No-
tably, estimation methods for joint production recently have been developed by Dhyne
et al. (2017, 2022); Valmari (2023); Cairncross and Morrow (2023). 3

The rest of the paper is organized as follows. Section 2 outlines the theoretical frame-
work, deriving sufficient statistics for measuring allocative efficiency explained by mul-
tiproduct firms. Section 3 presents the empirical evidence on joint production. Section 4
details the data and the construction of sufficient statistics. Section 5 applies the frame-
work to decompose aggregate TFP growth in Chile for the 2016-2022 period. Section 6

presents ex-ante structural results. Finally, Section 7 concludes.

2 A Theory to Aggregate Distortions in Networks with Mul-

tiproduct Firms

We develop a theoretical framework to analyze resource misallocation in production net-
works with multiproduct firms that use joint production technologies. Given that firms
use shared inputs to produce multiple outputs simultaneously, even with suitable data,
it is impossible to assign inputs to products separately. We generalize previous frame-
works to accommodate multi-product firms with joint production technologies. We pro-
vide sufficient statistics to measure changes in allocative efficiency using ex-post data.
Our framework is general enough to accommodate firm-to-firm linkages.

We use markup and wedge interchangeably to refer to any distortion that creates a
gap between price and marginal cost. This can include any distortions such as taxes,
subsidies, or financial frictions.

The section proceeds as follows. First, we formalize the concept of joint production
technology. To build intuition, we present parametric examples illustrating how joint pro-
duction affects resource allocation and aggregate TFP. Then, using the parametric model
data generation process, we discuss the sufficient statistics needed to measure allocative
efficiency. Next, we present our general model, and main proposition, which unpacks

allocative efficiency into a single-product term and a multiple-product term.

3Chilean invoice data provides both quantities and prices for outputs and inputs. This feature allows
us to overcome the identification concerns raised by Bond et al. (2021a) regarding markup estimation.



2.1 Joint Production

We begin by formalizing the concept of joint production, where firms simultaneously use
shared inputs to produce different products.

To formalize this concept, we follow Hall (1973)’s approach to joint production tech-
nology. Let ] (g, x) be a joint production function, where g is a vector of outputs and x is
a vector of inputs. The joint cost function is derived from the firm’s cost minimization
problem, as follows:

C(g,p) = min p'x,
er(q)

where V (g) is the input requirement set, V (q) = {x|] (g,x) > 0} and p is a vector of input
prices. We introduce two assumptions about the shape of a joint production function,
which will be used throughout this paper.

Assumption 1 (Constant Return to Scale (CRS)). ] (g, x) = 0 implies ] (Ag, Ax) = 0 for any
scalar A. *

Unlike a single-output production function, the output is a vector. Note that we do
not assume CRS for each single-output production function.

Assumption 2 (Separability between Input and Output Functions). The joint production
function can be written as J (g, x) = —F9 (q) + FX (x), and the joint cost function as C (g, x) =

H(q) ¢ (p).

Note that this differs from assuming separable production functions, where the out-
put, g, is a single product, not a vector; it degenerates to FQ(q) = g. Example 1 illustrates a
joint production function satisfying assumptions 1 and 2:

Example 1 (Constant Elasticity of Transformation Output Bundle and Constant Elasticity
of Substitution Input Bundle (CET-CES)).

atl
qg
3

S——— Input Bundle
Output bundle

<
o+1

S AL 4 KF)

*While we assume CRS, this is not theoretically restrictive. Variable returns to scale can be accommo-
dated through constant returns and producer-specific fixed factors. However, our empirical application to
Chile adopts constant returns with respect to observable inputs — labor, capital, and intermediates — as
we cannot measure producer-specific factors in our data.

7



The associated cost function is

g
1

1 o1 | 1
C(q, w, r) = Z( qgg ) (wl—e + 1’1_9>1 0 ,
8

where L and K are the two inputs, w and r are their prices, and g is a vector of outputs.
The input bundle takes a standard CES function with elasticity of substitution 6, and
the output is a vector of products rather than a scalar. The parameter o is called the
constant elasticity of transformation; it gives a constant value to the production possibility
frontier’s curvature of the products within a firm. This example is illustrative as our

theoretical framework requires no parametric assumption.

2.2 Parametric Examples of Misallocation with Joint Production

Before presenting the general framework, We provide simplified examples to help gain
an intuition about how joint production affects resource allocation and aggregate TFP.
Proofs are provided in Appendix F.

2.2.1 An Example without Joint Production

We begin with an example of a production network with multiproduct firms but without

joint production. Consider an economy with two firms, as illustrated in Figure 1.

Figure 1: A simplified economy with production networks and multiproduct firms

dlog un
markup shock

Firm 1 uses labor to produce two differentiated products using labor (L) as unique
input, g11 = L11, 12 = L12, where L = Ly; + Ly,. Product 1 is sold to firm 2, while product



2 is sold directly to households. For simplicity, we assume that both products have the
same markup, u. Firm 2 uses product 1 from firm 1 as a production input and produces
a different product using a linear technology (421 = g11) that sells to households with
markup u. Final consumption goods are aggregated using a Cobb-Douglas function Y =
cil cgz, where ¢; = g1, ¢; = q12. In this simple economy, Y is the real GDP, and aggregated
TFP can be defined as TFP = Y/L.

In a production network environment, distorted resource allocation arises from both
firms” own markups and downstream firms” markups. In this example, product 1 is sold
to households with double marginalization; firm 1 charges a markup to firm 2, and firm
2 charges a markup to the household. As a result, product 1 from firm 1 suffers from a
higher distortion than product 2 from firm 1, both relative to a perfect competition setup.
To capture this concept in our simplified economy, we introduce the notion of cumulative

wedges.

Definition 1 (Cumulative Wedge in a Simplified Economy). In this simplified two-firm
economy, we define the cumulative wedge for each product ¢ produced by firm 1, de-
noted by I'y,, as the product of markups along the production path from the initial pro-

ducer to the final consumer. Specifically:
I'y = HZ and Iy = W,

where y represents the markup applied by each firm. Here, I'; captures the cumulative
wedge for product 1, which is sold to firm 2 before reaching households, thus incorpo-
rating both firm 1’s and firm 2’s markups (double marginalization). In contrast, I', rep-
resents the wedge for product 2, which is sold directly from firm 1 to the household with
only a single markup.

Now consider a shock that changes firm 2’s markup on product 1 (dlog p21). The first-
order response of aggregate TFP to this markup shock can be expressed as:

11

- (T
Alog TFP = A4 (T_l - 1)dlog Ho1,
where T'; is the weighted harmonic mean of cumulative wedges, defined as:

fl = (;\11—‘;11 + ;\er21>_1 .



Since I'1; = p? > T'jp = p, we know that I'y; > I'y, making the term (T';/T1; — 1) negative.
Consequently, an increase in markup (dlog p»1 > 0) for product 1, which already faces
higher cumulative distortions, reduces aggregate TFP. This occurs because the markup
increase further distorts the allocation of resources away from the more distorted product,
exacerbating existing misallocation.

Conversely, a decrease in markup (dlog uy; < 0) for product 1 increases aggregate
TFP. The reduction in markup allows for increased production of product 1, which was
previously underproduced due to higher cumulative distortions. As the relative price of
product 1 decreases, households shift consumption away from product 2 toward product
1 (through firm 2’s product), leading to improved allocative efficiency and higher aggre-
gate TFP.

2.2.2 An Example with Joint Production

Next, we introduce joint production into our simplified economy. Instead of separable
production functions for each product, firm 1 uses a joint production technology to pro-
duce both products simultaneously using a constant elasticity of transformation (CET)

function: )
ol gt \aH
(qli 4y ) =L,
where o represents the elasticity of transformation between the two products.
Consider the same markup shock to product 1 from firm 2 as in the previous case
(dlog u»). By taking a first-order approximation of the change in TFP, we obtain the
following response:

_ vy (I
AlogTPP—(l 0+1)/\1(T11 1)dlogyz1, (1)

where T is defined as before. This expression reveals how joint production affects the
transmission of markup shocks to aggregate TFP.

The magnitude of the TFP response depends critically on the elasticity of transfor-
mation ¢, which governs how easily firm 1 can adjust its product mix. Since I';; > [}, an
increase in the markup (d log 11 > 0) reduces TFP by distorting the allocation of resources
away from the more distorted product 1, while a reduction in the markup (d log p2;1 < 0)
increases TFP by shifting production toward the more distorted product 1. However,

joint production attenuates these TFP responses through the term (1 — -%=). This atten-
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uation factor reduces the magnitude of the TFP response regardless of the direction of
the markup shock, reflecting the technological constraints firms face when adjusting their
product mix.
The role of these technological constraints becomes particularly clear when we exam-
ine two extreme cases:
Alog TEP = A (rr—lll - )dlogyzl if o = oo
ifo — 0.

As o approaches infinity, the case converges to our previous example without joint
production. The firm can freely adjust its product mix in response to the markup shock,
allowing for the maximum possible reallocation of resources. The TFP response in this
case represents the upper bound of the potential efficiency impact.

Conversely, as 0 approaches zero, the production technology becomes Leontief in out-
puts, meaning the products must be produced in fixed proportions. Consider, for exam-
ple, an oil refinery that produces both gasoline (product 1) and diesel (product 2). Due to
the chemical properties of crude oil and technological constraints of the refining process,
the refinery cannot easily adjust the ratio of gasoline to diesel production in response to
price changes. In this limit case, even if relative prices change due to markup shocks, the
tirm cannot adjust its product mix, eliminating any potential gains or losses from resource
reallocation.

Joint production thus attenuates the TFP response to markup shocks. The degree of
attenuation, captured by the term —-1-, reduces the magnitude of TFP response regard-
less of whether the markup shock is positive or negative. This suggests that previous
studies, which implicitly assume infinite substitutability across products (¢ — ©0), may
overestimate the impact of misallocation — both positive and negative — on aggregate
TFP.

2.2.3 Towards a Theory for Measurement

While our previous results help us understand how joint production affects TFP responses,
the structural results depend on the elasticity of transformation o, which is difficult to es-
timate. We seek to express these results in terms of prices, which are easier to obtain from
data.

With joint production, changes in relative prices are associated with changes in pro-

11



duction ratios:

dlog(pi1/p12) = %dlog(lhl/%z)- )

These price movements effectively trace out the production possibility frontier, whose
slope captures each firm’s technological constraints when adjusting their product mix.

In our simple example with joint production, let A;; denote the GDP share of product
j of firm i. The downstream markup change implies that the GDP share of product 1 of
firm 1 changes by dlog A1y = —dlog 1. Due to the Cobb-Douglas specification of final
demand, the GDP share of product 2 does not change (dlog A1, = 0). Combining these
observations with the relationship between relative prices and quantities gives us:

d 10g(P11 / 7912) ——d log Uog. 3)

Using this relationship, we can rewrite the TFP response in equation (1):

1 I

This can be further decomposed into two terms:

Alog TFP = A, (rr—l - 1)d log pia1 +dlog(pr1/pr2) (g—l - 1).
11

11

Single-Product Term Multi-Product Term

These terms can be expressed in terms of observable variables. The single-product
term becomes:

11

A (Ilj—l - 1) dlog 1 = —dlog A — 7\1dlog o1

where A is the labor share. The multi-product term can be written as a covariance between

price changes and cumulative wedges:

T T
dlog(p1/p12) (r_fl - 1) = Cov,, (d log P, Tf))

The single-product term captures the resource misallocation effects that would exist

5Taking logs and differentiating gives dlog A>1 = dlog p21 + dlog Aq1. Since A; is constant under Cobb-
Douglas demand, we have dlog A1 = —dlog u»1. Then, from equation (2) and dlog A = dlog g + dlogp, we
have dlog(q11/912) = ;57d10g(A11/A12).

12



even in an economy without joint production. When the initial equilibrium is inefficient,
products with high markups are underproduced. A decline in factor shares indicates re-
sources shifting toward these high-markup activities, but we must adjust for mechanical
changes in factor shares caused directly by markup changes.

The multi-product term captures how joint production affects firms” ability to reallo-
cate across products. Instead of estimating the firm’s production technology parameters
directly, we rely on observed changes in product-level prices within the firm. Intuitively,
if prices for certain products rise within the firm then this captures the firm’s inability to
easily substitute production across products. The covariance between these price changes
and cumulative wedges reveals how joint production constraints affect misallocation —
if prices rise for products with high cumulative wedges, then the scope for reallocation is

limited. This leads to our main result:

Proposition 1 (Sufficient Statistics in a Simplified Economy). In this simple economy, TFP
response to the markup shock to the downstream firm can be expressed as:

ATFP = Covs, (d logpa,), rr—l) —dlog A — Aydlog o,
1)

Multi-Product Term Single-Product Term

where s; = (A1, A) and T = (;llffll + XZFE 1 is the weighted harmonic mean of cumulative
wedges.

This result provides a approach to quantifying misallocation in the presence of joint
production. Rather than directly estimating technological parameters, we can infer the

constraints on resource reallocation from observed price movements within firms.

2.24 Another Example: Response to Taste Shocks

To further illustrate how joint production affects resource allocation, we consider a case
where the economy with CET joint production technology experiences taste shocks rather
than markup shocks. Specifically, we examine how changes in household preferences af-
fect aggregate TFP. Under the Cobb-Douglas utility function, when the preference weight
for product 1 changes by dA;, the weight for the product 2 adjusts by dA, = —dA;.

13



The first-order response of aggregate TFP to a taste shock can be expressed as:

AlogTFP:(l—ﬁ)%(rr—;—1)dlogil. (5)

As before, the degree of attenuation depends critically on 0. When o approaches infin-
ity, firms can freely adjust their product mix to match changes in consumer preferences.
When o approaches zero, firms must maintain fixed production proportions regardless of
taste shifts, eliminating any potential efficiency gains from demand-driven reallocation.

To express this in terms of observable variables, we first note that with joint produc-
tion, changes in relative prices are associated with changes in production ratios from
equation (2):

1
dlog(pi1/p12) = Edlog(lhl/%z)-

Using this equation, we can derive the relationship between relative prices and taste
shocks®:

1 1 <
dlog(pi1/p12) = m;\—Zd log A.
This allows us to decompose the TFP response:

Alog TFP = & (lf—l — 1)d10g/~\1 +A (lf—l - 1)d10gP11/P12-
1

2 11

Single-Product Term Mutil-Product Term

Following similar calculations as in the markup shock example, we can express the
single-product term using the labor share and the multi-product term as a covariance
between prices and cumulative wedges. We formalize this result in the following propo-
sition.

Proposition 2 (Sufficient Statistics with Taste Shocks). In this simple economy, the TFP re-

®The relationship between taste shocks and relative prices can be derived as follows. Under Cobb-
Douglas preferences, changes in expenditure shares directly reflect taste shocks: dlogAi; = % and
dlogAp = —%. The relative price change is related to quantity changes through the elasticity of trans-
formation: dlog(p11/p12) = 2dlog(q11/g12). Combining these with the relationship dlog A = dlogp + dlogg

yields dlog(p11/p12) = =7 }-%zd log A;.

14



sponse to taste shocks can be expressed as:

r
ATFP = Covs, (d logpa,y, Tll)) - dlogAr ,
, N ,
Single-Product Term

Multi-Product Term

where s; = (A1, Ay) and T = (]\J’Ill + izfl‘zl ~1is the weighted harmonic mean of cumulative
wedges.

These examples of markup shocks and taste shocks demonstrate a notable feature of
our sufficient statistics approach: despite the different nature of the underlying shocks,
their impact on allocative efficiency can be measured using the same statistics.

Moreover, when multiple shocks occur simultaneously, prices and factor shares reflect
the combined impact of these shocks. This is particularly useful because real-world data
can be considered to be generated as a consequence of compound shocks, meaning we
can infer changes in allocative efficiency from observed data.

While our examples have focused on a simplified economy, many of these insights

carry over to more general settings. We now turn to introducing a more general economy.

2.3 General Production Network Setup

We present our general framework to measure misallocation without imposing paramet-
ric assumptions on firms’ technologies. We allow for arbitrary firm-to-firm linkages and
arbitrary joint production technologies and, hence, heterogeneous transformation elastic-
ities across products within firms.

Multiproduct Firms

Firm i € N produces product § € G and uses products ¢’ € G from other firms j € N
and factors (Labor, L and Capital, K) as production inputs. 7 We assume the following

production set with CRS and separability between input and output functions:

"We treat factors exhibiting zero return to scale production functions; they generate production inputs
without using inputs from other firms.
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outputs Intermediate product g’ from j

where A; represents the productivity at the firm level.® While the model specifies
Hicks-neutral productivity, this formulation can accommodate input-biased productiv-
ity.” However, incorporating product-specific productivity differences requires that such
productivity be uncorrelated with the cumulative wedge introduced in Section 2.5 for
Proposition 3 to apply.

Firms charge a product-specific markup, u;,, over its product-specific marginal cost;
thus, the price is defined as p;; = mcigli-

Final Demand

Real GDP is the maximizer of a constant-returns homothetic aggregator of final uses of
products: Y = max,,..cv) U (Ci1, ..., Cng) subject to the budget constraint

-----

Zzpigcig = Z waf*ZZ — 1/ pig) Pigtliy

ieN geG felLK} ieN geG

where wy is the price of factor f.
Each product can be consumed by final consumers (c;,) or used as an input in produc-

tion by other firms (xj; ;). The following resource constraint applies:

ng:Cig"‘ijig, ZLi:L, ZKizK.

JEN ieN ieN

Figure 2 presents a stylized representation, showing the flow of products.

8While this formulation assumes common input intensities across different production activities within
a firm, this is not a theoretical restriction but rather a measurement constraint. If data exists for separable
production activities, these can be treated as if they were (joint) production activities of different firms.
Since such data is not available in our application, we assume common input bundles for each firm.

‘Input-specific productivity can be captured by introducing a fictitious producer who purchases in-
put j and sells to producer i using a linear technology, with Hicks-neutral shocks applied to this fictitious
producer.
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General Equilibrium

Given a vector of firm-level productivity, A, and vector of product-level markups, u, for
alli € N and ¢ € G, the general equilibrium is a set of prices (p;;) intermediate input
choices (x;j¢), factor input choices (L;, K;), output, (g;,), and consumption choices (c;;). As
such, (i) the price of each product is equal to its markup multiplied by its marginal cost;
(ii) households maximize utility under budget constraints, given prices; and (iii) markets

are clear for all products and factors.

Figure 2: Graphical illustration of networks with multiproduct firms

[ Final Demand ]

Notes: The dashed line represents firms” universe N, the dotted circled line represents each firm’s bound-
ary, and the circled line represents each product within a firm. The two top nodes represent factors, and the
bottom node represents households. Arrows represent the direction of input flows.

24 Input-Output Definitions

To state our decomposition results, we introduce notation for input-output relationships
at the product level.

Product-Level Input-Output Matrix

The product-level input-output matrix Q is a (NG + F) square matrix. Here, N is the

number of firms, Gis the number of products, and ¥ is the number of factors. Q has at its
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' element the expenditure share of product ¢’ from firm j and factor f € ¥ used by

i8,]8
firm i in production over firm i total costs (of producing all its products). The separability
assumption indicates that the same expenditure share applies for all products, g, that firm

i produces; thus, Qig,]-g/ and Qig,f are as follows.

O = Pig Xijg Vo= wyLis
19,19/ — 7 i L .
S Y PigXijg + Y. wsLip S Y Pigijg + X weLis

The product cost-based Leontief inverse W captures each firm-product pair’s direct and
indirect cost exposures through production networks. We use each W element to measure

the weighted sum of all paths between two nonzero firm-product pairs.

U=(I-O)'=i+Q+0O*+...

We define the final consumption share vector, b, as follows:
. Pl ifie N,geg
ig — .
0 otherwise

where GDP = }icn Yqeg PisCis- We set GDP to be the numeraire and define the product-
level cost-based Domar weight, ;.. 1 This measures the importance of product g from
firm i in final demand in two dimensions: directly when sold to final consumers, and
indirectly through the production network when product g is sold to other firms and

eventually reaches final consumers via downstream production networks.
A=bV=b+bQ+b P +...

Factor shares are defined as

wL rK

A=5pp M= Gop

Firm-Level Aggregation

Summing over products by firms allows us to recover the firm-level cost-based Domar
weight A;, which we use to compute the within-firm product-level Domar weight share

'We denote A with f € {L,K}.

18



~ ~ lg
/\i = Z /\ig/ Sig = ;\—
g€G i

Finally, we define firm-level aggregate markup as follows:

sales of i

Hi = total cost of i’

2.5 Cumulative Wedges

Building on our insights from the simple example, we now generalize the concept of cu-
mulative wedges to arbitrary production networks with multiproduct firms. The example
shows that products can face different cumulative distortions depending on their down-

stream supply chain. We now formalize this notion for arbitrary production networks.

Definition 2 (Cumulative Wedge). For product g of firm i, the cumulative wedge is de-
tined as:
Fig = iig//\ig X (Uig ’
S—— ——

downstream wedges  own wedge

where A, denotes sales share of firm i’s product ¢ over GDP.

The cumulative wedge summarizes the cumulative distortion in the downstream sup-
ply chain of product g sold by firm i. In efficient economies with no markups, the product
cost-based Domar weight equals observed sales shares, generating a cumulative wedge
equal to one for all products and firms. Conversely, in an inefficient economy, a portion of
the indirect demand transmitted from downstream firm-product pairs to upstream firm-
product firms is absorbed as profit by downstream firms. This effect accumulates in each
supply chain transaction upstream until indirect demand reaches product g sold by firm
i; thus, the sales share of a product is smaller relative to an efficient economic outcome.
Therefore, the larger the ratio, the greater the cumulative wedges in the downstream sup-
ply chain.

For our aggregation result, we compare distortions across products within the same
tirm. We do this by defining the weighted harmonic mean of cumulative wedges for firm
i

T; = [T

where s; represents the vector of within-firm cost-based Domar weight shares.
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Cumulative Wedges in a Simplified Example

To illustrate how cumulative wedges capture distortions, we revisit our simplified econ-
omy composed of two firms and a representative household. We normalize GDP to 1;
hence, in this setup, sales (shares) to final consumption are A; and A, for products 1 and 2
respectively; however, firm 1’s sales of product 1 are reduced by the markup charged by
firm 2, which is A,/ 1.

The product cost-based Domar weights are A; for both products 1 and 2. In matrix no-
tation, the value-added share vector (b) and the product cost-based input-output matrix
(Q) are:

[ 1, 000 1]
0 _loo o1
b= - ’ Q= ’
1, 1000
0000

where the matrix and vector components are arranged in the following order: product 1
and 2 of firm 1, firm 2, and labor. Therefore, the product cost-based Domar weights can

be computed as:

AMN=bV+VQ+10Q%+...,
= [;\1/ 0/ ;\2/ O] + [O/ Z1/ O/ O] .

Final demand Indirect demand

= [;\1/ Z11 Z2/ O]

These weights represent the counterfactual sales shares if markups were removed
while keeping expenditure shares constant. Following the definition, the cumulative

wedge for firm 1’s products is:

R
(;\1/[J) ' ;\1

I_111

The markup of product 2 from firm 1 and the product from firm 2 equal p. Compar-
atively, product 1 from firm 1 has a larger cumulative wedge of y? than that of product
2, reflecting both the product’s own markup and the downstream distortions the product
faces. In this case, product 1 from firm 1 generates a distortion by charging a markup and

is subject to an additional distortion through downstream production networks because
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tirm 2 uses the marked-up input in its production.
The next section shows how these wedges enter our main aggregation result for arbi-

trary production networks with multiproduct firms.

2.6 Aggregation Theorem with Multiproduct Firms within Production

Networks

To allow for joint production and derive sufficient statistics, this section generalizes the
concept of an allocation matrix introduced by Baqaee and Farhi (2020).

Let X be an (N + F) X (NG + ¥) admissible input allocation matrix; the columns are
buyer firms, and the rows are seller-product pairs. Each element, Xj;; = %, is the share
of the output of product ¢ produced by firm j that firm i uses as a production input.

A productivity shock (dlog A) and a markup shock (d log u) effect in real GDP, Y, can
be decomposed into changes in the distribution of X (dX), holding productivity constant,

and a pure change in productivity (d log A) for a given fixed allocation matrix X. In vector

notation: oY oY
_ J108 )
dlogV = 5X dlogX+alogAdlogA. 7)
A Allocative Efficiency A Technology

We now present a decomposition of changes in aggregate TFP that considers multi-
product firms and arbitrary production networks with product-level distortions.

Proposition 3 (Growth Accounting in Networks with Multiproduct Firms). To the first

order, aggregate TFP can be decomposed into technology and allocative efficiency terms as follows:

dlog TFP = E /L'COVSI. (d logp.), FL) - E /~\fd log Af — E Ad log u; + E Ad log A;,
: Q) : :
i f i i

~—— ——
Multi-Product Term Single-Product Term ATechnology

A Allocative Efficiency

where dlogp.) = (dlogpa, ..., d1ogpic) denotes the vector of price changes, T';.y = (T, ..., Tic)
represents the vector of cumulative wedges for firm i’s products, and T; = IES,,[F&lg)]‘1 is the
weighted harmonic mean of cumulative wedges.

Appendix F presents the proof. The change in aggregate TFP can be decomposed into

technology and allocative efficiency terms. The technology term represents a weighted
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average of changes in firm-level Hicks-neutral productivity using cost-based Domar weights.
The allocative efficiency term is further decomposed into a multiproduct firm term, a
change in aggregate factor shares, and firm-level average markup changes.

The multiproduct term captures the allocative efficiency implications of firm-level
product mix adjustments. When a firm adjusts its product mix, the relative prices of
its products change to reflect the reallocation costs imposed by technological constraints.
These price changes interact with existing distortions: if prices rise more for products
with higher cumulative wedges (captured by a positive covariance), technological con-
straints limit reallocation precisely where it would be most beneficial for efficiency. In
this general setting, these opportunity costs vary across firms and product pairs, reflect-
ing differences in the curvature of their production possibility frontiers. For example, an
oil refinery producing gasoline and diesel may face different constraints when adjusting
its production mix than a dairy farmer producing milk and meat.

To calculate the aggregate effect across the economy, we sum these firm-level covari-
ances using Domar weights, which indicate its macroeconomic importance. This aggre-
gation allows us to quantify the overall impact of product mix changes on allocative effi-
ciency in the economy.

Regarding the single product term, which consists of factor shares and firm-level
markup, if the initial equilibrium is inefficient, the products charging markups are under-
produced relative to an efficient economy. Improving the allocation involves reallocating
resources to a more distorted part of the economy, such as firms’ product pairs that charge
relatively high markups. A decrease in factor shares implies reallocating resources to the
portion of the economy that has relatively high markups; however, if the change in factor
share is due to a change in markup, this is a mechanical change and does not imply real-
location. Therefore, the contribution of the change must be purged, which the firm-level
markup term captures. The factor shares and firm-level markup terms are proposed by
Bagaee and Farhi (2020). Both terms are valid under a joint production approach and,
together with the multiproduct term this work introduces, constitute allocative efficiency.

Relation to Existing Aggregation Theorems

Proposition 1 nests existing aggregation theorems for production networks as a special

case.

Corollary 1 (Baqaee and Farhi (2020)). If no firms engage in joint production and impose the
same markup on all their products (the single-product firm assumption), then to a first order, ag-
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gregate TFP growth can be decomposed into technology and allocative efficiency terms as follows.

dlog TFP = Z Ad log A; - Z Ad log ui — Z /~\fd log A¢.
ieN ieN feFr

~— ——

Technology Allocative Efficeincy

The proof follows from the fact that the covariance term from Proposition 3 is zero because the
changes in marginal cost and markup for all products within a firm are equal.

Our approach quantifies misallocation through the multiproduct channel by measur-
ing deviations from the single-product, single-markup assumption when product-level
data are available; if this assumption holds, the multiproduct term becomes zero. The as-
sumption of uniform marginal costs and markups is unlikely to hold in practice; however,
its quantitative relevance remains an empirical question. Our decomposition quantifies
the extent to which this assumption is violated and isolates the impact of existing misal-
location literature.

Finally, without markups, when prices equal marginal costs, allocative efficiency con-
verges to zero. In this case, all aggregate TFP changes are attributed to technology, align-
ing with Hulten (1978).

Corollary 2 (Hulten (1978)). Growth Accounting in an Efficient Economy:

dlog TFP = Z Aid log A;.
ieN
—_—

Technology

The proof follows from the fact that the markup is always 1, the markup change term is 0, and the
sum of factor shares is always 1. Therefore, the sum of factor changes is always 0, and the covari-

ance of the multiproduct term is 0 because I';.y = (I'y1, ..., I'ic) are all 1 in an efficient economy.

Proposition 3’s formula converges to Hulten’s theorem when the economy is efficient.
Measured aggregate TFP growth equals the Domar weighted sum of firm-level produc-
tivity changes.

3 Empirical Evidence on Joint Production

In Section 2, we developed a theoretical framework that accommodates multiproduct
firms using joint production technologies. When production technologies across products

23



within firms are separable, our framework collapses to existing aggregation theorems that
treat each product as a separate firm. The literature on multiproduct firms often assumes
such product line independence (Bernard et al. (2010, 2011); Hottman et al. (2016); Mayer
et al. (2021)).

We exploit geographic variation in firms” exposure to local demand shocks to test
for joint production. Using Chilean firm-to-firm transaction data, we leverage that each
product within a firm has its own set of buyers in different locations. When some lo-
cations experience negative demand shocks due to COVID-19 lockdowns, this creates
product-specific variation in demand within firms. Following Hall (1973); Ding (2023),
we first examine whether negative shocks to the demand for one product affect the pro-
duction and pricing of other products within the same firm. We then exploit the same
quasi-experimental variation to estimate the elasticity of transformation between prod-

ucts, providing a quantitative measure of these technological linkages.

3.1 Partial Equilibrium Setting for Reduced-Form Regression

Consider a firm operating with the joint production technology characterized by the CET

function introduced in Section 2 where its cost function can be expressed as:

Pos (o (q;\ o \7T
Clar-a0 =—2(Y(E)" )" >0 ®)

Pl
where g, represents the output of product g, and Py; denotes a composite input price
index combining inputs, potentially any combination of intermediate inputs, labor, and
capital. The parameter o represents the elasticity of transformation between outputs in
production. For each product g, we assume a standard isoelastic demand with cross-price
elasticity equal to zero'!:
% = Dypss 05> 1, ©)
where D, > 0 is the demand shifter for product g, 0, is the own-price elasticity, and p,
is the price of product g. We allow a reduced-form wedge i, such that p, = u, X 37(;. We
assume changes in D, are uncorrelated with changes in 1,; therefore, exogenous variation
in D, shifts the firm’s output choice for good ¢ without directly affecting the wedge.

"Hottman et al. (2016) studies settings where firms’ products compete for the same customers or in the
same markets, generating non-zero cross-price elasticities through cannibalization. Our empirical strategy
focuses on firms where the buyers of the shocked product do not overlap with the buyers of other products
whose responses we examine.
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Proposition 4 (Within-Firm Demand Shock Spillover via Joint Production). Consider a
negative demand shock to product k (dlog Dy < 0). For products g # k, this leads to:

(i) Quantity response: dlogq, <0,

(ii) Price response: dlogp, > 0.

When product k experiences a negative demand shock, its production is dampened,
and hence, the opportunity cost of producing other products increases through the con-
cave production possibilities frontier. These changes in opportunity costs translate into
higher marginal costs for other products, leading firms to raise their prices and reduce
their quantities.

In the extreme, if 0 = oo in (8), product lines are independent. Then, a shock to Dy does

not alter mc, for ¢ # k, meaning that there is no cross-product spillover. Formally:

Lemma 1 (Independent Product lines). When products are perfectly separable in production
(0 = 00), a demand shock to product k has no effect on other products g # k:

dlogg, = 0, dlogp, = 0, VYg#k

This lemma corresponds to the standard assumption in the multiproduct firm litera-
ture, where product lines operate independently.

Complete proofs of Proposition 4 and Lemma 1 are provided in Appendix D. Ap-
pendix B presents examples of market structures that generate our assumed relationships

between wedges and demand shifters.

3.2 Data and Empirical Strategy

We use data from the Chilean Internal Revenue Service (SII), covering all formal firms
in Chile.”> We then employ monthly data from January 2019 to December 2021 to test
for joint production. The SII provides detailed information on firm-to-firm transactions

through electronic tax documents. This dataset, which captures every product, quantity,

2This study was developed within the scope of the research agenda conducted by the Central Bank
of Chile (CBC) in economic and financial affairs of its competence. The CBC has access to anonymized
information from various public and private entities by virtue of collaboration agreements signed with
these institutions. To secure the privacy of workers and firms, the CBC mandates that the development,
extraction, and publication of the results should not allow the identification, directly or indirectly, of natural
or legal persons. Officials of the CBC processed the disaggregated data. All the analysis was implemented
by the authors and did not involve nor compromise the Chilean IRS. The information contained in the
databases of the Chilean IRS is of a tax nature originating in self-declarations of taxpayers presented to the
Service; therefore, the veracity of the data is not the responsibility of the Service.
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and price traded between formal Chilean firms, contains data on over 15 million unique
firm-specific product descriptions.’> We divide the value traded over its quantity to ob-
tain average yearly prices for every triplet.!

To test the model’s predictions about spillovers across products, we exploit geographic
variation in COVID-19 lockdowns across Chilean counties in March 2020 as exogenous
demand shocks. These lockdowns represent negative shocks to the demand shifters D,
in our theoretical framework, allowing us to examine how firms adjust their production

of other products in response.

COVID-19 Lockdowns in Chile

The Chilean government implemented county-specific lockdowns beginning in March
2020. We focus on this initial period to ensure the shock was unexpected. Figure 3 illus-
trates the spatial heterogeneity of these lockdowns.

Figure 3: Distribution of early Covid-19 lockdown in Chile

Notes: Lockdown counties as of March 2020 are red; all others are gray.

B3The specific invoice variable is called “detail”, which is inherently firm-specific and can differ between
firms even for the same product. For example, one supermarket might declare selling ”Sprite can 330cc”
while another declares selling “Sprite 330”. This variation across sellers does not affect our analysis in this
section as we do not compare identical products across firms.

4Tn Appendix A.1, the distribution of the number of products is provided
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We exploit this geographic variation as a source of demand shocks to intermediate in-
put transactions, treating lockdowns as negative demand shocks (reductions in D) from
buyers in lockdown areas to their suppliers in non-lockdown areas. Appendix A.1 vali-
dates this approach, demonstrating that firms in lockdown areas reduced their interme-
diate input purchases by approximately 20%.

Empirical Evidence for Joint Production

To investigate how demand shocks to one product affect the production of other prod-
ucts within firms, we focus on shocks to firms” main products (defined by highest sales
from January 2019 to December 2021). We classify a firm as experiencing a main product
demand shock if at least one buyer of its main product is located in an area that imple-
mented a March 2020 lockdown.

To quantitfy this effect, we study the impact of demand shocks to a firm’s main product
on the production of its other products using an event-study specification for all products
g #Fm:

10
log Xigt = Z B:Dis;+FEi + FE, + €1, (10)
j=—11

where X, represents either the quantity or price of product g for firm i at time t. D;;_;
is a treatment indicator equal to one if firm i was treated j months ago. FE;; and FE; are
firm-product and time fixed effects, respectively. The coefficients of interest are f;, which
capture the effect of the main product’s demand shock on other products” quantities or
prices at different time points relative to the shock.

To obtain unbiased estimates of 8, the treatment indicator D;;_; must be conditionally
orthogonal to the error term ¢;,;. A concern is that supply-side shocks could be correlated
with the lockdown if suppliers and main product buyers are located in the same area,
potentially confounding our results. To address this issue and isolate the impact of de-
mand shocks from the main product while ruling out direct supply shocks, we impose

the following restrictions:

1. Firm Location: The firm itself is not located in an area under lockdown.
2. Supplier Location: The firm’s direct suppliers are not subject to lockdown shocks.

3. Buyer Location for Product g: None of the buyers of product g are located in lock-
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down areas.”®

Restrictions 1 and 2 help eliminate direct supply-side effects, ensuring that any ob-
served changes in production are not due to supply disruptions that affect the firm or its
suppliers. Restriction 3 ensures that product g is not subject to a direct demand shock, al-
lowing us to attribute any changes in its production to the demand shock that affects the
main product m. It also ensures that buyers of the main product and product g are differ-
ent, eliminating the impact of shocks to the main product on product g through demand
complementarities and justifying equation (9).

Our treatment group comprises firms meeting these conditions with main products
experiencing March 2020 demand shocks. The control group includes firms satisfying
the conditions but whose main products remained unaffected by lockdowns. Figure 4

presents the regression results.'®.

Figure 4: The effects of demand shocks to the main product on the production of other
products within the firm

(a) Log quantity (b) Log price
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Notes: Standard errors are clustered at the firm-county level, and the error bands represent 95% confidence
intervals. The X-axis represents the time to treat, with 0 denoting March 2020, when the main product
experienced the demand shock. The other values indicate the number of months before or after this event.

>Within the same firm, each product typically has its own set of buyers. As a result, when buyers of one
product are affected by the lockdown, buyers of other products may remain unaffected. This distinction is
further detailed in Figure Al of Appendix A.1.

16A comparison of observable characteristics between the treatment and control groups is provided
in Table A2 of Appendix A.1. Appendix Table A3 provides sensitivity analyses using the Difference-in-
Differences (DiD) specification.
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The results support our joint production setting with finite elasticity of transforma-
tion. First, the pre-shock stability of quantities and prices between treatment and control
groups supports the parallel trends assumption and the unanticipated nature of initial
closures. Second, consistent with Proposition 4(i), we find a significant 10 % decrease in
non-main product quantities following main product demand shocks, with persistent ef-
fects. Third, aligning with Proposition 4(ii), we observe sustained price increases for other
products. These combined quantity and price spillovers match our theoretical predictions
under finite 0 and reject the product line separability hypothesis.

Discussion on Other Within-Firm Spillover Mechanisms

Our findings of negative quantity spillovers and positive price spillovers across products
within firms contrast with several alternative mechanisms in the literature:

First, Almunia et al. (2021) propose a model of diminishing returns to scale or firm-
specific factors at the firm level to explain how a decline in domestic demand in Spain
affects exports. Their model predicts that when there is a negative demand shock for a
product in one market, firm-specific factors are reallocated to another product in another
market, positively affecting the production of the same product in other markets. This
prediction contrasts with our findings, which show negative spillovers across products
within the same firm.

Second, Ding (2023) focuses on industries that share knowledge-intensive inputs to ex-
amine joint production effects in the US using Census data. This paper, like ours, predicts
that when a product faces a negative demand shock, it negatively affects other products.
The study interprets the model prediction as knowledge spillovers across industries shar-
ing intangible inputs; however, knowledge spillovers are unlikely to explain our results.
The differences in time horizon (five years vs. monthly data) and research and develop-
ment (R&D) intensity (Chile’s R&D spending is less than one-tenth that of the US as a
percentage of GDP) limit its applicability to our context.

Third, Giroud and Mueller (2019) model demand-driven regional spillovers through
financial constraints, predicting negative quantity responses across regions. While this
aligns with our quantity findings, related work by Kim (2020) suggests financially con-
strained firms reduce prices, contrary to our observed price increases. Our results persist
in a subset of financially unconstrained firms (see Appendix A.1), suggesting financial

constraints are not the primary driver.
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3.3 Estimating the Elasticity of Transformation

Finally, using the same sample of firms and product pairs from our event study analysis,
we estimate the elasticity of transformation 0. Beyond providing direct evidence of joint
production, this parameter is used for markup estimation to implement Proposition 3
and a counterfactual analysis in Section 6. Throughout this section, A refers to the yearly
difference.

For each firm i, we focus on pairs of its main product (denoted m) that experienced a
lockdown shock and its other products (denoted g) whose buyers were not in lockdown
areas. Let p;, and p;, be their prices, and g;,, and g;, be their respective quantities. We

regress the change in the relative price on the change in the relative quantity:
Pig\ _ qig
Alog(f) = a+ pAlog(FE) + yFEx + &g (11)

where f is the main coefficient of interest, and product-year fixed effects control for sup-
ply and (unobserved) demand shocks common to all products within each given product
category.

The error term ¢; ., may contain supply-side factors such as wedge changes i, or
technology shifters changes a, that could correlate with relative quantities."”

To address this endogeneity concern, we employ the demand shock from our event
study as an instrument: the exposure of the main product’s buyers to local lockdowns.
This demand shock remains orthogonal to supply-side productivity or markup shifts that
might affect relative quantities through the production technology. Under our constant
elasticity demand specification in equation (9), demand shifter D,, changes are uncorre-

lated with wedge and technology shocks, satisfying the exclusion restriction. '8

1
%/”x) o

17For any two products g and & within the same firm, the ratio of marginal costs satisfies, —= =
mcy, Gl an

Taking logarithms with wedge adjustment and differences across time, yields:
1 1
Pe) = By q o
Alodp—:) = Alogy—fl) + - Alogq—i) - Aloda—:).

18 A concern emerges regarding the potential correlation between markups and demand shocks. If higher
relative demand leads to lower demand elasticity (consistent with Marshall’s Second Law of Demand), our
estimates of § could exhibit downward bias, resulting in upward-biased estimates of ¢. This relationship
can be understood through the following mechanism: when the main product m experiences a negative
demand shock, the ratio g/, increases while the reduction in D,, leads to a decrease in ¢/, Neverthe-
less, given that the literature conventionally assumes o = oo, our estimates provide an upper bound for o,
serving as a conservative estimate even in the presence of variable markups.
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Estimation Results

Table 1 reports estimates of f under different specifications, each using one-year differ-
ences and the same sample restrictions from the event study.

Table 1: Estimating o

1) (2) ®)

B 0.949***  1.207*** (.865***
(0.0015) (0.0586) (0.0209)

Implied o 1.053 0.828 1.155

Time FE Y Y N

Products X Time FE N N Y

F stats - 276.7 274.6

Notes: The Table reports the results of estimating equation (11), clustered at the firm-municipality level.
Columns (1) report a result by ordinary least squares (OLS), while columns (2) and (3) report results by
2SLS. Three stars indicate statistical significance at the 1% level.

Across columns, the implied ¢ values range between about 0.8 and 1.2. The OLS
estimates are close to the IV estimates, suggesting that the potential bias is not significant.
These estimates reject the hypothesis of full separability (¢ — o0), indicating concave

curvature in firms’ production possibilities frontiers.

4 Construction of Sufficient Statistics

Having established the presence of joint production, we implement our sufficient statis-
tics framework developed in Section 2 using a dataset from the Chilean Internal Revenue
Service (Servicio de Impuestos Internos, SII). As discussed in Section 3, the dataset pri-
marily relies on electronic tax invoices, which provide detailed records of all firm-to-firm
transactions, including product descriptions, quantities, and prices. These invoices al-
low us to observe the complete structure of firm-to-firm relationships and compute firm-
specific product shares.

To construct a full input output matrix, and cumulative wedge, we additionally use
tax accounting declarations, which provide monthly data on each firm’s revenue and
input expenditures, including capital and labor costs. A key advantage of the SII data is
its use of unique identifiers for firms and workers, which allows individual and firm data

to be merged across datasets. We utilize four distinct sources from SII.
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The first is the value-added tax form, which includes gross monthly firm sales, mate-
rials expenditures, and investment.

Second, the SII provides information from a matched employer—employee census of
Chilean firms from 2005 to 2022. Specifically, firms must report all payments to individ-
ual workers, including the sum of taxable wages, overtime, bonuses, and any other labor
earnings for each fiscal year. All legal firms must report to the SII; thus, the data cover the
total labor force with a formal wage contract, representing roughly 65% of employment
in Chile. For any given month, it is possible to identify an individual worker’s employ-
ment status, their average monthly labor income that year, a monthly measure of total
employment, and the distribution of average monthly earnings within the firm.

Third, income tax form data includes yearly information on all sources of a firm’s
income and expenses. This form allows for computing every individual’s actual tax pay-
ments for each year. Details on sales and employment are available on this form; however,
we use only data on capital stock for each firm and year. This approach allows us to build
perpetual inventories using data from the monthly F22 form. We obtain the user cost
of capital by multiplying nominal capital stock by the real rental rate of capital, which
is built using publicly available data. We use the 10-year government bond interest rate
minus expected inflation plus the external financing premium. Finally, we use the capital
depreciation rate from the LA-Klems database.

Fourth are electronic tax documents from 2016 onward. These documents provide
information on each product (price and quantity) traded domestically or internationally
with at least one Chilean firm. We only use domestic transactions and observe the firm-to-
tirm transactions and a firm’s sales (including firm-to-firm and firm-to-consumer sales).
We compute firm-specific product shares for firm-to-firm transactions and assume that
their distributions are equivalent to firm-to-consumer transactions to recover the com-
plete distribution of firm sales by product. Each firm-to-firm transaction includes a “de-
tail” column that records the name of each product.

Building on the data cleaning process described in Section 3, we process the data to
construct product code-level output and input-price indices for each firm using standard
Tornqvist indices. We aggregate products into a 290 product-code identifier to facilitate
comparison between firms, allowing us to estimate product production functions that use

the same product across firms.
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4.1 Data Cleaning and Implementation Strategy

We begin the data processing by applying filters to the raw data to obtain the final database
for empirical analysis. We define a firm as a taxpayer with a tax ID, positive sales, pos-
itive materials, positive wage bill, and capital for any given year. We exclude firms that
hire less than two employees a year or have capital valued below US$20 in a year. All
variables are winsorized at the 1% and 99% levels to mitigate measurement error.

We selected 2016 as the base year for price indices because it was the first year we
observed prices for firm-to-firm transactions. This method is widely recognized for es-
timating aggregate production functions at the firm or plant level when price data is
accessible. We use crosswalks developed at the Central Bank of Chile (Acevedo et al.
(2023)) to address the challenge of product aggregation (from around 15 million prod-
ucts to 290 product codes). We create aggregated product-level quantity produced and
material usage indices, matching product descriptions and characteristics to ensure con-

sistency across firms and over time.

4.2 Construction of Sufficient Statistics

We measure five distinct objects to implement the growth accounting framework that
includes the multiproduct channel: (1) product-level cost-based Domar weights A, (2)
product-firm level price indices, (3) product-level markups p, (4) cumulative wedges,
and (5) aggregate objects. We discuss each of these in the following subsection.

4.2.1 Product-Level Cost-Based Domar Weights

The product cost-based Domar weights can be calculated using the following equation:

AN=bV=b+bQ+vQ?*+...

To compute these weights, we must measure value-added shares (b) and the input-
output matrix (QQ). We measure these objects directly from the data.

Final expenditure shares (b) are represented by a vector of dimension (NG + ¥) x 1.
Here, N is the number of firms, G is the number of products, and ¥ is the number of
factors. The first NG entries are calculated as the residual between a firm product’s total
sales and its intermediate sales to other firms (measured from the firm-to-firm data). This

approach provides a theory-consistent measure of final expenditures. The final F entries
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are set to zero because households do not directly purchase factors. Using firm-to-firm
records and factor expenditures, we construct the input-output matrix Q at the product-
tirm level.

Specifically, we compute an annual cost-based input-output matrix by product. We
calculate the denominator of each element (indexed by ig, j¢’) by summing a firm'’s pur-
chases from all its suppliers, its wage bill, and its capital multiplied by the relevant user
cost rental rate of capital. The last two elements of the matrix have wage bills and capital
expenditures as their numerators.

The resulting Q is a (NG + 2) X (NG + 2) matrix that can be expressed as follows:

Quin Quing | Quingnn  Quings2

Q=| Qngn Onene | Qnvengt Qngngs2
0 0 0 0
0 0 0 0

Based on the separability assumption, the same expenditure share applies to all products
g that firm i produces. The expressions for Qg ;- and Q;, ¢ are as follows:

O, . = Pig'Xijg Oy = wyLif
19,19/ — 7 zgl - .
“ET ip PigXijg + LpwrLif YjpPigXijg + Ly weLis

Factors do not require inputs; thus, the last row of the matrix is zero.

After calculating the product-level cost-based Domar weights, we sum them for the
same firms to compute the firm-level cost-based Domar weights and their shares. These

will be inputs for Proposition 3.

4.2.2 Product-Firm Level Price Indices

We observe prices for each transaction and aggregate them into 290 product categories.
We construct two types of price indices: output and input price indices. We compute
tirm-product-specific annual price indices for the output price index, which is an input to

sufficient statistics that deflates product output for production function estimation. The
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original data are at the “detail” product level, which we aggregate to a Tornqvist index for
each 290 product category the firm owns. Specifically, we construct the following price

index:

idt t Sidi—
AlogPig = Z %Mog Py,
deg

where d is the detailed category belonging to the upper product category (290 product
codes). Alog Pj is the price change, and s is the share at time ¢ in the continuing prod-
ucts in category g. We construct our price index with 2016, the starting year of the data,
as the base year. We also construct an input price index to deflate material costs for pro-
duction function estimation. We define one aggregate index per firm because aggregate
materials are used as inputs in production function estimation. The construction method
is the same as for the output price index.

4.2.3 Cumulative Wedges

To construct the cumulative wedge measure, we need product cost-based Domar weights,
product sales shares, and product markups :

A

_ g

Lig = Hig
salesshare;q
————

Downstream wedge markap

As discussed in Section 2, the ratio of cost-based Domar weights to sales share rep-
resents the cumulative wedge accumulated downstream of a product. The downstream
wedge is calculated using cost-based Domar weight and its sales share. The remaining
markup for the own markup needs to be estimated.

As our baseline specification, we employ the accounting approach, wherein markups
are assumed to be homogeneous within firms and are computed as the ratio of firm-level
sales to firm-level costs. In this setting, variation in cumulative wedges across products
within firms emerges solely from heterogeneity in downstream wedges. This setting is
consistent with single-product firm models (e.g., Bagqaee and Farhi (2020)), thereby fa-
cilitating direct comparison of our findings with the existing literature under equivalent
conditions in the next Section.

In the Appendix D, we present alternative results using product-level markup esti-
mates based on Dhyne et al. (2022)’s methodology. Implementing this approach requires
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CET parametric production function, for which we utilize our transformation elasticity
estimates from Section 3. Chilean invoice data, including price and quantity, enables us
to circumvent the identification challenges in markup estimation highlighted by Bond
et al. (2021a). We find that this approach yields nearly identical aggregate results, which
can be attributed to the fact that most of the variation in cumulative wedges stems from

downstream wedges.

Ranking of Downstream Wedges

Which products have greater downstream wedges? We ranked products by their cumu-
lative wedges to better understand which products face increased downstream wedge.
Below, we describe and discuss the major product categories. Appendix C presents the
complete list of the 30 top and bottom items.

The product categories with the greatest (downstream) wedge mainly comprise busi-
ness services. For example, insurance brokerage services top the list, followed by employ-
ment services (recruitment and supply), electricity distribution to businesses, and postal
and courier services. These products are usually upstream inputs that other firms use in
production, suggesting insufficient size as wedges accumulate through the supply chain
before they reach final demand.

Conversely, the least distorted products include cakes, beer, pet food, personal ser-
vices such as hospitals, and minerals (copper, silver, and molybdenum), that are Chile’s
primary export industry. These products are common downstream products close to
Chile’s final demand. As a result, the number of supply chains that reach the final con-

sumer is relatively small, and inefficiencies are relatively less likely to accumulate.

4.2.4 Aggregate Objects

In addition to product cost-based Domar weights and cumulative wedges, we must mea-
sure aggregate objects to implement the sufficient statistics presented in Proposition 3. In
particular, Y, L, K, Ar, and Ak denote aggregate value-added, employment, capital, and
labor and capital shares, respectively. We measure Y, L, and K as the sum of value added,
employment, and capital, respectively, for all firms in the economy. Factor shares of GDP,

YWe estimate product-level markups using the production function approach developed by Dhyne et al.
(2022), which extends the Ackerberg et al. (2015) production function estimation technique to a joint pro-
duction setting.

36



Ar and Ak, are measured as total compensation and capital with user cost of capital di-
vided by GDP. Real GDP is calculated by deflating GDP with the official GDP deflator.

5 Application: Decomposing Aggregate TFP Growth

This section applies Proposition 3 to analyze aggregate TFP growth for the Chilean econ-
omy. Our analysis covers 2016 to 2022, during which Chile’s aggregate TFP stagnated and
decreased at the margin. This productivity trend aligns with the pattern of productivity
stagnation observed in Chile using different computation methods. %

We begin by presenting results using the standard assumption in the literature of
single-product firms. If firms produce a single product, then Corollary 1 applies:

dlog TFP = —Z /Ldlog‘ui - Z[\fdlog/\f+ Z)N\idlogA,-

ieN fexr ieN
————
AAllocative Efficeincy ATechnology (Residual)

This approach implements growth accounting but overlooks multiproduct firms en-
gaged in joint production. Figure 5 illustrates the decomposition of cumulative changes
in aggregate TFP from 2016 to 2022 under this assumption.

Figure 5 shows that the allocative efficiency term (in red) declined over this period.
This outcome suggests that high-markup firms contracted further, resulting in a nega-
tive reallocation effect; however, the contribution of allocative efficiency exceeds that of
the technology (residual) component, particularly during the COVID-19 pandemic and
the subsequent high inflation period. To rationalize this disparity, the technology term,
measured as a residual, must have increased by about 20%.

20CNEP (2023)
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Figure 5: Cumulative TFP growth decomposition: ignoring multiproduct term

\\//\

2016 2017 2018 2019 2020 2021 2022

Allocative Efficiency (Single-product term)
Technology (Residual)
Cumulative TFP

Notes: This Figure shows the cumulative change calculated by applying Corollary 1 repeatedly each year.
Technology (residual) is calculated by subtracting allocative efficiency from TFP growth.

Next, we incorporate the multiproduct term using Proposition 3:

dlog TFP = Z ACovy, (d log p.), %) - Z Aidlog u; — Z ArdlogAf + Z Aidlog A;

ieN ieN fer ieN
———— —
Multiproduct term Firm-level Markup Aggrregate Factor Shares A Technology (Residual)

A Allocative Efficiency

Figure 6 presents the results incorporating the multiproduct term, which reduces the
magnitude of the technology (residual) observed in Figure 5. In other words, the multi-
product and single-product misallocation terms account for a larger portion of aggregate
TFP movements during the COVID-19 pandemic and the resultant high inflation period.
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Figure 6: Cumulative TFP growth decomposition with multiproduct term

\\/__\

2016 2017 2018 2019 2020 2021 2022

Allocative Efficiency (Single + Multi-product terms)
Technology (Residual)
Cumulative TFP

Notes: This Figure shows the cumulative log change calculated by repeatedly applying the equation from
Proposition 1 each year. Technology (residual) is calculated by subtracting allocative efficiency from aggre-

gate TFP growth.

Reallocation effects that consider joint production explain 86% of the observed ag-
gregate TFP growth. Conversely, as shown in Figure 5, ignoring joint production leads
to overestimating resource misallocation. This result suggests that considering joint pro-
duction considerably decreases the reallocation implied under the traditional assumption
that firms produce only single products.

This finding is consistent with the joint production mechanism described in Section
3. When firms engage in joint production, they create multiple products using common
inputs. When a given product receives a shock, if firms face technological constraints to
adjust their product mix (non-infinite elasticity of transformation), firms will struggle to
reallocate productive resources from one product to another. The reallocation through
substitution among products within multi-product firms is attenuated, and reallocation

is not materialized to the extent suggested under the single-product firm assumption.
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Figure 7: Cumulative TFP growth decomposition with multiproduct term
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Notes: This Figure decomposes the cumulative change in allocative efficiency in Figure 6 into single-

product and multi-product terms.

Furthermore, Figure 7 breaks down the allocative efficiency in Figure 6 into multi-
product and single product terms. It shows that the offsetting of reallocation due to joint
production will become particularly strong after 2020. During this period, the economy
was disrupted by COVID-19 and subsequent high inflation. We interpret the latter as
firms facing changes in product-specific demands, which changed their total demand
composition. In response, firms were willing to readjust their product mix by reallocating
productive resources. However, due to the non-infinite elasticity of transformation, firms
were constrained to change their product mix.

Finally, the granularity of the data allows us to track the distributional changes of joint
production (the multiproduct term) that limit the extent of resource reallocation. Since the
covariance degenerates to zero under the single-product firm assumption, the dispersion
of covariance implies that joint-production forces are active. These distributions vary
from period to period. Figure 8a plots the distribution for pre-COVID-19 (2016-2019),

which is symmetric around 0, with slight differences from year to year.
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Figure 8b presents the distribution after the onset of COVID-19, showing a shift to the
right from year to year, resulting in a right-skewed distribution. This result suggests that
the increase in the contribution from joint-production forces (the multiproduct term) was

not driven by a few specific firms.

Figure 8: Covy, (d logp.), %) distributions by year

(a) 2016 - 2019 (b) 2019 - 2022
2] o]
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2016 2017 2018 2019 2019 2020 2021 2022

Notes: These Figures plot the distribution of firm level Covj, (d logpa.y, %) for each year.

Finally, Figure 9 plots the median variance of product-specific production changes
across firms from 2016 to 2022. This figure provides suggestive evidence that aligns with
the changing distribution of multi-product firms shown in Figure 8b and corresponds
to the period of significant contribution from the multi-product term in our decomposi-
tion. The increasing variance, particularly the sharp rise from 2019 to 2020 and its sus-
tained high level thereafter, indicates that firms have been under greater pressure to ad-
just their product mix. This trend coincides with the timeframe when we observe the
most substantial impact of the multi-product term on allocative efficiency. The temporal
consistency between the increased variance in product-specific production changes and
the heightened contribution of the multi-product term reinforces our model’s emphasis
on the importance of multi-product firms engaged in joint production, especially during
major economic shocks like the COVID-19 pandemic.
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Figure 9: Large product mix adjustments: suggestive evidence

n
2
2016 2017 2018 2019 2020 2021 2022

Notes: This figure depicts the evolution of the median variance of product quantity changes, denoted as
Var,, (d10g gig), from 2016 to 2022,

6 Extension: Ex-Ante Structural Results

This section develops a structural framework to predict how economies with multiprod-
uct firms respond to shocks. While our previous analysis relied on observed price and
factor share changes, we now model these endogenous responses explicitly. This theo-
retical extension allows us to move beyond ex-post measurement to ex-ante prediction of
counterfactual scenarios. The framework complements our earlier results.

We show how to apply this framework to study the distance to the Pareto-efficient
frontier when firms use joint production technology. This method compares output in an
efficient equilibrium (with all markup wedges removed) to that in a distorted decentral-
ized economy. Our analysis demonstrates how the theoretical results of previous studies,
such as those of Hsieh and Klenow (2009) and Bagaee and Farhi (2020), change when
tirms engage in joint production. Since an economy without markups is unobservable, a

model is necessary to analyze this counterfactual case.
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6.1 The Nested CET-CES Model

We propose the nested CET-CES model, which provides a tractable framework for our
analysis. We use the same setup with subsection 2.3 but impose the CET-CES functional
form to the joint production function to the equation 6. We then derive a linear system for
price and sales responses, allowing us to characterize the economy’s response to shocks.
The production technology is given by:

i
oj+1 o+l

Z Sig [%‘g] o = A, Z 9_’ + a)z-,LL.H_" + a)i,KK.g_i . (12)
9€G jEN.g'eG

Output bundle Input Bundle

Here, 0; represents the elasticity of transformation between different outputs, A; de-
notes the productivity of firm i, and 6;; are the output share parameters. The input bundle
comprises intermediate inputs g, o, labor L;, and capital K;, aggregated using a CES func-
tion with an elasticity of substitution 0;. Note that this class of models is highly general,
nesting the nested CES system widely used in macroeconomics and international eco-
nomics as a special case.”! For single-output firms, the production function degenerates
to:

0;
0-1
6;-1 0;-1 0;-1 )Y
o o, o

0 i i
qi = A; Z wirjg/qi,jg' + a)i,LLi + a),-,KKl. . (13)
JEN,8'€G

Input bundle

Furthermore, we specify the household utility function as a CES aggregator over final
consumption goods. Formally, the representative household’s utility function is given by:

0o
0p-1 ) %01

U(Cll, weer Cigyenes CNG) = Z llbigcl-gT (14)

ieN,g€G
where ¢, represents the consumption of product ¢ from firm i, w;, represents the taste
parameter for each product, and 0, is the elasticity of substitution between products.
For analytical simplicity, we assume a uniform substitution elasticity within the firm’s

CES structure, though extending the model to incorporate further nesting would be straight-

Z'When multi-product firms are assumed to be a collection of single-product firms, we can model situ-
ations with different input ratios by assuming equation (13) for each product and treating that group as a
firm, provided the necessary data is available.
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forward.

6.2 Linear System for Price and Sales Responses

Using this model, we construct a system for solving the first-order response to primitive
shocks (A, p) to the endogenous variables. This system of linear equations, derived from
the model’s first-order conditions, enables us to generate ex-ante predictions of how the
economy will respond to counterfactual shocks. We begin with the multi-product firm'’s

forward equation under the CET output function:

Proposition 5 (Multi-Product Firm’s Forward Equation under CET Output Function).

dlogpis = — Z Wie i (d log 1j — dlogA]-) + Z W, rdlog Af
JEN.g'€G feF

Indirect cost exposure

R\f .
+ Z ¢;Wigjgdlog®jy
JEN,S'€G

Indirect exposure to the Product Mix adjustment

where
dlog®j, = (i)dlogy' i+ 1 [dlog/\' A ]
i =\ +1 jg' T Hj (1+0’j) jg' 174
and cf = % is a reference product cost share. Here, r denotes a reference good.
18118

This equation describes how changes in unit prices within a firm due to markups,
productivity shocks, and price changes associated with endogenous product mix adjust-
ments are transmitted through production networks to other firms” products. The first
term illustrates the effect of exposure to common cost shocks on prices, a force present in
standard production network models. The second term, unique to the joint production
model, indicates the exposure of firms with nonlinear production possibility frontiers to
modify their product mix due to reallocation, which affects endogenous unit costs. The
magnitude of this effect depends on the transformation elasticity, with lower elasticities
leading to larger cost effects. As o approaches infinity, this endogenous effect disappears,
as firms can freely adjust their product mix.

Next, we consider backward propagation:
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Proposition 6 (Backward Propagation).

NgdlogAig == Y Ajg (Wigis —1(ig = j§)) dlog
JEN.g'€G

+ Z Mg (1 - 6") Cova,, (d logp, \I’(:,ig))-

keN,g"eG ‘leg//

This equation, based Baqaee and Farhi (2020) methodology, describes the sales and
factor share response. Notably, it does not contain o, indicating that joint production
only affects the changes in sales share via substitution effects. The equation shows how
shocks propagate through the production network, affecting markups and quantities of
each product via changes in upstream suppliers’ price indices and productivity.

By combining the forward equation from Proposition 1 and the backward equation
from Proposition 2, we obtain a complete system of linear equations that characterizes
the economy’s response to shocks. This system consists of 2 X (1 + N X G + ¥ ) equations
and 2 X (1 + N X G + ¥) unknowns, where N is the number of firms, G is the number
of products, and ¥ is the number of factors. This system of equations fully characterizes
the first-order response of all endogenous variables to any combination of productivity or
markup shocks. By solving this linear system using standard matrix algebra, we can con-
duct counterfactual analyses and evaluate the impact of various shocks on the economy’s

equilibrium outcomes.

6.3 Distance to the Pareto-Efficient Frontier

Using our model, we can characterize the distance to the Pareto-efficient frontier when in-
troducing distortions, allowing us to predict efficiency losses from counterfactual changes

in markups or other distortions:

Proposition 7 (Distance to the Pareto-Efficient Frontier). Under joint production, starting
at an efficient equilibrium, up to second order, and in response to the introduction of distortions,
changes in the TFP are given by Domar-weighted Harberger triangles:

1
L= > lZg: Aigdlog giedlog i, (15)

where Ajq is the Domar weight of product g from firm i, q;, is the quantity, and g, is the markup.
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This result demonstrates that TFP changes resulting from the introduction of distor-
tions are solely determined by three statistics: Domar weights of each product; the mag-
nitude of the wedges; and the change in the quantity of the product. The quantity change
can be derived from sales and price changes given by our linear system, using the rela-
tionship dlog g = dlog A —dlog p. Since this system includes transformation elasticity o, it
is generally affected by the elasticity value. To illustrate how joint production affects the

Distance to the Frontier, we provide analytical solutions for two examples.

6.3.1 Horizontal Economy with Joint Production

We consider a horizontal economy similar to Hsieh and Klenow (2009) but with use joint
production technologies. This allows us to investigate within-firm markup heterogeneity
in the presence of production transformation constraints. In an economy with a repre-
sentative consumer (CES utility with elasticity 0), N firms each use a shared input L to
produce G products using CET technology (elasticity o). Markups u;, are heterogeneous
across products and firms.

Proposition 8 (The Distance to the Frontier in the Horizontal Economy).

1 1
L= _EG (Var;\(d log wig) — 1 IEz {Varsl. (dlog ”ig)}) ’

o+

where Var,(dlog u,) and Vara(dlog uig) represent the Domar weighted variance of markup
change and the average of within-firm variances of markup changes, respectively. Vectors A =
(A1, A1z, -, ANG), A = (A1, Ay, ..., Ay) are the vectors of firm-level revenue and cost Domar
weights with A; = Zg Aig, and s; = (Ai/Ai, A/ Aiy ..., Aig [ A)).

Proposition 8 characterizes the distance to the frontier in a horizontal economy with
joint production and heterogeneous markups. The distance to the frontier comprises two
markup variances. The first term means the product-level markup’s Domer-weighted
variance gives the distance to the frontier. On the other hand, the second term, which is
related to joint production, means that the finite elasticity of transformation o attenuates
the effect of the variance of the markup within the firm. As ¢ increases and approaches
infinity, the force of attenuation associated with joint production approaches zero. Con-
versely, as 0 approaches zero (which implies Leontief production technology), the impor-
tance of within-firm markup dispersion decreases. We give this result in the following

formal corollary.
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Corollary 3 (Limit Cases). The distance to the frontier simplifies in extreme cases of the elasticity
of transformation:

1. As 0 — oo (perfect substitution between products):
1
L= —58 Var(d log ).
2. As o — 0 (Leontief production technology):
1
L= —59 Var;(Es, (d1og u;))-

In the case of perfect substitutes, misallocation depends on the variance of markups
across all products. This term can be obtained by considering the product as an indepen-
dent firm and applying the results of Baqaee and Farhi (2020). Conversely, in the Leontief
case, only the variance of markups between firms is relevant. This is a consequence of the
law of total variance.

These results imply that, in the absence of within-firm markup dispersion, the term
related to joint production disappears regardless of the value of 0. However, this rea-
soning is specific to horizontal economies. This relationship easily breaks down in more
complex economic structures that include firm-to-firm networks, and ¢ remains essen-
tial even when markups within firms are homogeneous. To illustrate this, we consider a

simplified network example examined in Section 1.
6.3.2 Simplified Network Economy

Proposition 9 (The Distance to the Frontier in a Simplified Network Economy).

o
o+1

L= —17\1;\2 (

> ) (dlog )’ (16)

Despite no within-firm markup dispersion, o appears in the loss function, demonstrat-
ing that network structure and transformation elasticity jointly determine the distance to
the frontier.

Welfare losses decrease as ¢ increases. We obtain an upper bound on social loss as
o approaches infinity. When o approaches zero (Leontief case), no misallocation occurs
regardless of markup size.
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These findings emphasize the importance of considering network structures and trans-
formation elasticities when evaluating misallocation and efficiency in economies with

joint production, even without within-firm markup dispersion.

6.4 Application to Chile

We now apply our theoretical framework to analyze efficiency losses in the Chilean econ-
omy due to markup distortions. Using the data in 2018 constructed in Section 4, we esti-
mate the distance to the Pareto-efficient frontier while accounting for both joint produc-
tion technology and network linkages. To implement Proposition 7, we require estimates
of both the CET transformation elasticity (0) and substitution elasticity (0).

For the transformation elasticity, we use 0 = 1.2 from the estimated transformation
elasticities from Section 3. We compare the value of the distance to the frontier with the
case of independent product lines (6 — o0), which, under constant returns to scale, is
equivalent to assuming single-product firms.

For the value of elasticity of substitution, following Arkolakis et al. (2023) studying
Chilean economy, we set the substitution elasticity 0 to 2.5.

For markups, we employ estimates from Section 3 that are consistent with our CET
specification. Our primary focus is comparing economies with joint production to cases
with independent product lines, so we use the median estimated o value as our bench-
mark and compare it to the case where ¢ — 0.

Using these parameter estimates, we calculate the distance to the Pareto-efficient fron-

tier using Proposition 7:

1
L= ~5 lZg: Aigd log gied log i (17)

Table 2: The Distance to the Frontier

Specification The Distance to the Frontier Description
Baseline (0 = 1.2) 12.3% Estimated ¢ in Section 3
Independent Products (0 — o0) 18.7% Linear PPF case

As shown in Table 2, in our benchmark economy with joint production, we estimate
efficiency losses of 12.3% of GDP. In contrast, when assuming linear PPF (equivalent to

single-product firms), the estimated losses increase to 18.7%. This finding aligns with our
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earlier results regarding joint production’s constraining effect on reallocation: assuming
separable production technology leads to overestimating the degree of resource realloca-
tion induced by a given set of wedges.

This application demonstrates the empirical validity of our theoretical framework and
highlights the importance of considering joint production when analyzing misallocation
in economies with multiproduct firms. The results suggest that previous studies may
have overestimated potential efficiency gains from eliminating markup distortions by
failing to account for the constraints that joint production technology imposes on firms’
ability to adjust their product mix.

7 Conclusion

This paper develops a theoretical framework to aggregate distortions in production net-
works with multiproduct firms. We assess their impact on aggregate TFP growth and
derive sufficient statistics to describe allocative efficiency with multiproduct firms engag-
ing in joint production.

We apply the framework to a comprehensive Chilean firm-to-firm transaction database.
Reallocation effects considering joint production explain 86% of the observed aggregate
TFP growth. Conversely, ignoring joint production leads to overestimating resource mis-
allocation.

We demonstrate the importance of considering joint production in understanding ag-
gregate TFP dynamics, especially during economic disruptions. The constraints multi-
product firms face in adjusting their product portfolios reduce reallocation within the
network that single-product models would predict.

Our analysis reveals that joint production, a previously understudied source of TFP
growth, can be of first-order importance. Our results demonstrate how aggregating gran-
ular microdata, through the lens of theory, can reduce the measure of our ignorance as

captured by aggregate TFP and provide new insights into the drivers of economic growth.
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Appendix for “Aggregating Distortions in Networks with
Multi-Product Firms”

A Additional Figures and Tables

A.1 Additional Empirical Results for Reduced-Form Evidence

In this appendix section, we present additional Figures and Table for the event study

analysis shown in Section 3.

Validation of COVID-19 Lockdowns as Demand Shocks

This appendix validates our use of Chilean COVID-19 lockdowns in March 2020 as de-
mand shocks to intermediate input transactions. We demonstrate empirically, using firm-
level transaction data, that these lockdowns led to substantial reductions in intermediate
input purchases.

We posit that intermediate input transactions declined between suppliers in unaf-
fected (gray) counties and buyers in counties that experienced early COVID-19 lock-
downs (red). To test this hypothesis, we estimate the following reduced-form specifi-

cation at the buyer level:

log My =  Lockdown; + FE; + FE; + ¢4, (18)

where M;; denotes total intermediate input purchases of a firm i at time t and Lockdown;
is a dummy variable equal to one if firm i’s location was under lockdown at time ¢, and
is zero otherwise. To address potential bias arising from buyers in lockdown areas who
purchased from suppliers in lockdown areas, we restricted the sample by including only

buyers with suppliers in non-lockdown areas.
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Table A1l: Lockdown and intermediate input purchases

1) (2) 3)
Lockdown Dummy  -0.222%* -0.230%* -0,191***
(0.0524)  (0.00521)  (0.0589)

Firm FE Y Y Y
Time FE N N Y
Sector x Time FE N Y N
Restricted sample N N Y

Notes: The Table reports the results of estimating equation (18) by ordinary least squares (OLS), clustered
at the firm-municipality level. The sample periods are January 2019 to March 2020. Columns (1) and (2)
report results for the full sample. Column (3) presents the results restricted to firms with no suppliers in
the lockdown area. Three stars indicate statistical significance at the 1% level.

The results confirm our hypothesis: The coefficient of interest, 3, is negative, indicating
that purchases of intermediate inputs from lockdown counties decreased by about 20%
on average. This result confirms that we can interpret the decrease in purchases as a
negative demand shock to intermediate inputs sold by firms in non-lockdown regions to

buyers in lockdown regions.

Characteristics of Treatment Firms

Table A2 displays the characteristics of treated and control firms.

A2



Table A2: Characteristics of treatment firms

Treatment Firms Control Firms

Number of firms 26,411 96,321
Number of workers 6 4
Number of products sold 16 10
Number of producers 107 119
Number of buyers 59 26
Annual revenue (million pesos) 186 101
Annual total intermediate purchases (million pesos) 107 59
Share of firms in manufacturing 0.21 0.24
Share of firms in Retail and wholesale 0.44 0.39
Share of firms in Services 0.22 0.21

Notes: This Table presents the characteristics of treated firms (those whose major product buyers experi-
enced lockdowns in March 2020) and control firms, showing values from February 2020, the month before
the shock. The rows for the number of workers, products sold, providers, buyers, revenue, and total in-
termediate purchases display the median of each statistic. The industry shares indicate the proportion of
firms within each group that belong to specific industries.

Firms Sell Different Products to Distinct Sets of Buyers

We construct the following measure to characterize the heterogeneity from the interme-

diate inputs buyer perspective across products and within firms:

_ number of buyers of the main product of firm i

number of buyers of firm i

where the main product is the one that has the largest sales within firm 7 in 2018. Figure

A1 presents the distribution of this measure across firms.
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Figure Al: Buyer heterogeneity across product within firm
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—

Percent
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Notes: Histogram of the number of buyers buying the main product of firm i / number of buyers in firm i
for a multiproduct firm. The main product is the product with the highest sales within that firm. Data are
from 2018.

If the buyers of the seller’s main product and its other products were the same, S;
would be one. Some mass exists at S; = 1 but for more than 50% of multiproduct firms;
however, buyers of the main product constitute less than 50% of the total buyer-firms
base. The fact that each product has a distinct set of buyers ensures that we can construct
a sample where the main product experiences a demand shock while the other products
do not.

Event Study Excluding Small Firms

To address potential bias from financially constrained firms in our event study, we con-
duct a robustness check that focuses on larger firms, which we assume to be relatively
less financially constrained. We calculate total firm sales, including both network and
final consumer sales, for each year of the study period (2019-2021). We then isolate firms
above the 80th percentile of this distribution and replicate our event study analysis from
Section 3 using only this subset of larger firms. Figure A2 presents the results of this
robustness check.
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Figure A2: The effects of demand shocks of the main product on the production of other
products within the firm: Robustness check

(a) Log quantity (b) Log price
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Notes: Standard errors are clustered at the firm-county level, and the error bands represent 95% confidence
intervals. The X-axis represents the time to treat, with 0 denoting March 2020 when the main product
experienced the demand shock. Other values indicate the number of months before or after this event.

The event study results that exclude small firms are similar to the event study that

includes all firms, suggesting that financial constraints are not driving the results.

DiD Specification

This section presents sensitivity results using the Difference-in-Differences (DiD) specifi-
cation, showing responses in both quantity and price.

log Xio; =B Lockdown;; +FE;q + FE; + €4,
—_———
shock to main product

where Lockdown;; = 1 if firm i 's main product experienced the demand shock and after
March 2020.

Columns (1) and (2) correspond to the Figure 4 of the main text. Columns (3) and
(4) include the input price index as a control variable. Columns (5) and (6) restrict the
sample to large firms, corresponding to Figure A2. Columns (7) and (8) limit the analysis
to manufacturing firms only. Columns (9) and (10) incorporate fixed effects that vary over
time at the level of the harmonized product code (CUP). Columns (11) and (12) replace
the binary treatment with a continuous measure using the share of transaction values to

lockdown destinations in the firm’s main product.
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Table A3: Average treatment effects

m @ G ® ®6) 6 @ ® © (10) (m (12)

logq -0.117** -0.117** -0.102*** -0.106*** -0.125%* -0.159***

(0.0046) (0.0046) (0.0053) (0.0188) (0.0049) (0.0062)
logp 0.0175*** 0.0184*** 0.0191*** 0.0193*** 0.0168*** 0.0177%**

(0.0021) (0.0022) (0.0022) (0.0096) (0.0023) (0.0024)

Input price control N N Y Y Y Y Y Y Y Y Y Y
Large firms N N N N Y Y N N N N N N
Only manufacturing firms N N N N N N Y Y N N N N
Time X product FE N N N N N N N N Y Y N N
Continuous treatment N N N N N N N N N N Y Y
Observations 7,693,066 7,693,066 7,669,848 7,669,848 4,394,166 4,394,166 1,399,617 1,399,617 7,594,918 7,594,918 7,693,066 7,693,066

Notes: Input price control indicates inclusion of the Tornqvist input price index. Large firms restricts to firms above the 80th
percentile in total sales. Only manufacturing firms restricts to the manufacturing sector. Time X Product FE are time-varying fixed
effects at the harmonized product level. Continuous treatment uses the share of transaction values to lockdown destinations in firm’s

main product instead of the binary lockdown variable. *** denote significance at 1%.

Distribution of the Number of Products

We use the 2018 data to describe the main features of the firm-to-firm trade patterns.
Of all firms, 75% produce multiple products, and these firms account for 98.94% of
intermediate input transaction value. Table A4 illustrates the distribution of products per

tirm, weighted by firm-to-firm transaction values.
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Table A4: Distribution of product numbers

Percentile Number of products Number of products

(Unweighted) (Weighted by transaction value)

1% 1 1
5% 1 2
10% 1 4
25% 2 36
50% 7 475
75% 26 2,459
90% 119 32,195
95% 290 37,422
99% 1,253 62,372

Notes: The Table presents the distribution of product numbers for 2018. The left column shows the number
of products without weighting, while the right column displays the number of products weighted by the
intermediate product transaction volumes of the firms.

Finally, we provide aggregate firm-level statistics for our growth accounting.
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Table A5: Aggregate firm-level statistics

Year Count Sales Wagebill Employment
2016 110,451 262,506 40,260 4,242,555
2017 114,480 277,960 43,691 4,349,248
2018 115,916 330,486 44,688 4,349,454
2019 116,706 336,386 47,299 4,425,780
2020 102,306 310,317 44,053 3,935,883
2021 105,651 376,220 51,642 4,166,838
2022 105,032 454,818 59,148 4,266,972

Notes: Count stands by the number of firms when sales and wage bills are yearly aggregates expressed in
millions of pesos. Employment represents the headcount of yearly workers included in the sample.

B A CET Cost Function and Lerner Index

We solve the firm’s profit maximization problem in the setting at Section 3 and show that

the optimal markup in joint production follows the standard Lerner formula.

Profit Function. The firm’s profit is

N
I1= Z[pi qi] -C@q1,---,9n)-
—

1

We want to solve for each p; that maximizes I1, showing that the ratio p;/ (07C / (9qi) is given
by a standard Lerner markup formula.

We consider how p; affects profit. Because g; depends only on p;, we have

JI'l 0 0
3_271‘ = a—pi[Pi %’(Pi)] - (9_1?1C()

The cost C(...) depends on p; only through g;, so

dgi
O%i (...)= 3—; d_Zz (the partials w.r.t. g; for j # i vanish, since p; does not enter g;).
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Hence,

J ag;
a—pi[Pi qi] =qitpi d_Pz
But from g; = D; P;e’)
dg; —6,-1 qi
— = -0, D; ; = =-0,—.
dpi P pi
Thus P
_ qi _ A
8_r7i[pi Clz‘] = pi[_ei Iz] +gi=(1-0i)q;
Meanwhile,
J _dgi qi
a—piC(ql,...,qN) = 1mc; d_pz = mcz[ 0; Pi]'
Therefore oI
a—pi = (1 — Qz) qi — YI’ICZ'[—QZ' }q?i:l = (1 — 61) qi + 91' ;% mec;.

Setting 3—2 = 0 gives

(1-6) g+ 9% me; = 0.

Divide through by g; > 0:

A-ey+6."5 -0 — gMi_g_1 — P__0
pi pi mc; 0;,—1
So the optimal price for good i is
Pz - 91‘ _ 1 1

matching the usual Lerner Index ratio -2, even though the cost function couples all

0;-17
outputs (41, ..., 9n).
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C Downstream Wedge

Table A6: The 30 most distorted products

Ranking Description

1 Insurance brokerage services

2 Other services

3 Passenger air transport services

4 Wholesale trade intermediary services

5 Electricity distribution and other related services

6 Investigation and security services

7 Airport services

8 Radio and open TV broadcast services

9 Wastewater treatment services

10 Online content services

11 Cleaning services

12 Liquefied Natural Gas

13 Employment services (placement and supply)

14 Postal and courier services

15 Tobacco

16 Paper and cardboard containers, paper or cardboard for recycling
17 Other IT services

18 News agency services

19 Margarine and similar preparations, other residues and waste from fats
20 General insurance

21 Other rubber products

22 Other auxiliary and complementary services for education services
23 Other goods or services not classified elsewhere

24 Long-distance passenger transport services

25 Gas distribution services and other related services

26 Some other product

27 Maritime passenger transport services

28 Research and development services

29 Repair and installation of machinery and equipment, except for the textile industry
30 Database software licensing services

Notes: For 2018, products are ranked using the downstream wedge medians for the product categories,
and products with the top 30 downstream markup sizes are reported.
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Table A7: The 30 least distorted product

Ranking Description

1 Molybdenum minerals and their concentrates

2 Other non-metallic minerals

3 Gaseous natural gas

4 Crude oil

5 Mining works

6 Unrefined copper, ashes, residues and wastes of copper

7 Silver

8 Public administration and defense services; compulsory social security plans
9 Pet food

10 Bird food

11 Fish meal, crustacean, mollusk and other aquatic invertebrate meal
12 Ammonium nitrate

13 Lease services with or without purchase option

14 Bread

15 Veterinary services

16 Poultry meat and edible offal

17 Integrated telecommunications services (packs)

18 Fuel oil

19 Beers

20 Life insurance

21 Cakes, cakes and cookies

22 Hake

23 Consultancy and post services

24 Copper minerals and their concentrates

25 Public hospital services

26 Social and association services

27 Petroleum gas and other gaseous hydrocarbons, except natural gas
28 Fish oil

29 Mining exploration and evaluation services

30 Housing services

Notes: For 2018, products are ranked using the downstream wedge medians for the product categories,
and products with the top 30 downstream markup sizes are reported.
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D Additional Empirical Results for Growth accounting

In this section, we analyze the results obtained using the product-level markup estimation
methodology developed by Dhyne et al. (2022). We first delineate the markup estimation
procedure and subsequently perform growth accounting analysis employing Proposition
3, consistent with our main specification. Our findings indicate that the results remain
largely invariant between our baseline specification and the case accounting for markup
heterogeneity, which can be attributed to the fact that the majority of variation in cumula-

tive wedges stems from downstream markups rather than firms” own markup decisions.

E Detailed Methodology for Product-Level Markup Esti-

mation

We estimate product-level markups using the production approach of Dhyne et al. (2022),
while extending their framework to incorporate a CET production function based on gen-
eral functional form proposed by Cairncross and Morrow (2023). Dhyne et al. (2022) pro-
posed a production function estimation method that is like that of Ackerberg et al. (2015)
yet is based on the production set of Diewert (1973).

E.1 Production Technology Framework

Using the previously estimated elasticity of transformation parameter o, we specify the
CET production function. The firm’s technology is characterized by the relationship:

E ({qig } geG) = A (Mi Li KD,

where F! represents the input aggregation function.

E.2 Cost Minimization and Markup Identification

Following Dhyne et al. (2022), we rely on cost minimization to identify unobserved marginal
costs. Firms have inputs X; = (M;, Kj, L;), where M, L are variable inputs and one fixed
input, capital K. The cost minimization problem that a firm faces is:

Cillis} o X P = min Y PXX; stF?=F.
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The first-order condition for a static input M; yields:
Pf+A o, 0 19
. + i = ’
v (19)

— JC;

where A; is the relevant Lagrangian multiplier. Marginal costs MCjg = 7-- can be written
8

18 1 9 ; N

oF!

1 o1
MC;, a2 pM°
— 7
8qig

The firm-product markup ;e = Af_lcglg is obtained by:

dInFL(X;)
dInM; lg
‘g aInFe  PMM
1
Jdln qig

where R;, represents the revenue from product g and PMM; represents the expenditure on

materials. Finally, in the CET case, we specify:
(o))
=1 ig
Following Dhyne et al. (2022); Cairncross and Morrow (2023) to gain markup identifi-
cation, we impose the restriction that all products share the same productivity parameter:

a;; = a; for all g. Then the markup of product ¢ becomes:

F=Q=(

1

(91an
alnM,-

(qig) /Z?:l(qig’

Rig
)— PMM,

Hig =
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E.3 Estimation

To identity j%f/i, Dhyne et al. (2022) assume that firms use a Cobb-Douglas production
function with three factors (Capital K, Labor L, and Materials M). To account for unob-
served productivity, we follow Ackerberg et al. (2015)’s control function approach, and
we use lagged values as instruments. We estimate the following production function:

log Qit = Po + Prlog Kt + prlog Liy + B log My + wi

where w;; represents firm-specific productivity.

To recover quantity measures free of price variation, we construct firm-level price in-
dexes using Tornqvist indices. This enables the estimation of quantity-based rather than
revenue-based output elasticities, addressing a key critique in the literature (Bond et al.
(2021b)).

We estimate production functions separately for each one-digit product category us-
ing GMM with lagged inputs as instruments to recover output elasticities. We leverage
the material input elasticity to compute firm-product level markups. Figure A3 presents
the markup distribution in 2018 (Panel a) and the time evolution of median markups by

product category (Panel b).

Figure A3: Markup estimation results

(a) Markup distribution 2018 (b) Median markup series by product category

Percentage

2014 2016 2018 2020 2022

o 4
Argiculture Minning
Manufacture Utilities

Construction —— Wholesale
Transport —— Financial Services
Real Estate — Business Services
Personal Services

Notes: The markup distribution shown is trimmed at the 5% and 95%.
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E.4 The cumulative wedge

The cumulative wedge, I, is essential in constructing the multiproduct term, and it is
vital to understand whether this variation arises from downstream wedges or a prod-
uct’s markup. For this analysis, we use markup estimated by the production function
technique.

Table A8: Variance decomposition of log I

Year Downstream wedge Own markup Covariance

2016 106.4% 1.8% -8.2%
2017 107.4% 2.1% -9.5%
2018 107.3% 2.2% -9.5%
2019 107.6% 2.4% -10.0%
2020 107.6% 2.6% -10.2%
2021 107.3% 2.7% -10.0%
2022 107.2% 2.8% -10.0%

. o . Aig
Notes: We compute the variance decomposition of the logarithm of I';, = esshary, % Mig for each year.

Var (log l"l-g) = Var (log ()L-g / salesshareig)) + Var (log yig) +2Cov (log (;\ig / salesshare,-g) ,log pig). The first term
on the right-hand side is the variance of downstream wedges. The second term is the variance of their own
markup, and the last is the covariance of both. We report the percentage of each term on the right-hand
side that explains the total variance.

Table A8 presents the variance decomposition of I by year. The results show that most
variation in I" stems from downstream distortions, with a minimal contribution from the
product’s markup. This finding is unsurprising, given that downstream distortions repre-
sent cumulative wedges throughout the downstream supply chain of the entire economy.
In contrast, y represents a product’s own markup. This result implies that the down-
stream distortions faced by each pair of firms and products are highly heterogeneous
when considering product- and firm-level production networks.

Next, we apply Proposition 3 to the cumulative wedges. We found that

(the multiproduct term using I' as input) will be less sensitive to markup estimates. In
our application, we show the two methods produce almost identical aggregate implica-
tions.
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Figure A4: Cumulative TFP decomposition with multi-product term

\\/___\

2016 2017 2018 2019 2020 2021 2022

Allocative Efficiency (Single + Multi-product terms)
Technology (Residual)
Cumulative TFP

Notes: This Figure shows the cumulative log change calculated by repeatedly applying the equation from
Proposition 1 each year. Technology (residual) is calculated by subtracting allocative efficiency from TFP.
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Figure A5: Allocative efficiency decomposition with multiproduct term

Qt -
(\! .
o \/;’ \
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Multi-product term Single-product term

Allocative Efficiency

Notes: This Figure decomposes the cumulative change in allocative efficiency in Figure A4 into single-

product and multi-product terms.
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Figure A6: Decomposition of multiproduct term

| B

I I I I I I I
2016 2017 2018 2019 2020 2021 2022

Markup contribution
[ 1 Marginal cost contribution
Multi-product term

Notes: This Figure decomposes the cumulative change in multiproduct term using Cov;, (d log (i), %) =

Cov;, (d log mc ., %) + Covy, (d log iy, %) in Figure A5.

F Proofs

Proof of Example 1 in Subsection 2.2. This proof uses Proposition 3. First, the multi-product
term is zero since that example has no price variation. To compute the endogenous re-
sponse of the labor share A to a change in the markup 1, we begin by expressing A,
solely in terms of the cumulative wedges I'. Recall that the cumulative wedges are defined

as:

I'n= Hi1H21, I'p = Hi2,

where 1;, denotes the markup of firm i on product g.

The labor share A; can be written as:
AL:1—12(1—i)—il(pi)—ili(pi).
Hi2 H21 H21 Hi1
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Simplifying, we have:

AL:iz(L)-i-il( 1 )
H12 H21 11

Using the definitions of the cumulative wedges, this becomes:

1 1
A =i i
L 2(r12)+ 1(rn)

Since I';; does not depend on p;1, the dependence of A; on iy is solely through I'y;.

Differentiating A; with respect to 1,1, we obtain:

dr _ 5 1

Therefore, the derivative of log A; with respect to log pio; is:

dlog Ap 3 iﬁ B _;\1}111#21
d 10g ‘u21 AL dHZl [-121 ./\LF%1 .

Since I'1; = p11421, we have F%l = (U1 y21)2, so the expression simplifies to:

dlogA X4
dlog U21 B AT

Substituting the expression for Ay in terms of I':

1 1
A= Az(rlz) th (rn)

we find that: r
Al = /\2 ( 11) + il-
I
Therefore, the derivative simplifies to:
dlog AL A

dlog Lo - i, (Fn) )\1
12
ATy
121_'1_21 + ;\11—‘;11 ’
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And
Z Ad log u; = Avdlog .

Therefore,

dlog TFP = A (% - 1)dlog Uo1.
11

O

Proof of an Example 2 in Subsection 2.2. Let us pick product 2 to be a reference product for
firm 1. Then, we obtain

1
d log Pll/Plz =d log Hll/#lz + Ed log ]/11/]/12-

Using the relation dlog A = dlogp + dlog y, we derive

o 1
dlogpi/pi2 = (m) dlog pi/pin + md log A11/A12,

where dlog p11 = 0 and dlog u1» = 0. From the Cobb-Douglas assumption, we know that
dlog A11/A12 = dlog uy. Therefore, we have

1
dlogpu/pi2 = (m)dlog Lo1.

Now, we can write

r. [ dlo =
COVS,. (d IOg P, 1—'1:1 )) = COV[;]L;\Z] dl gZH ] ! |: I;}ll ]J
i | 4108 P12 T
P dlogpii/pr2 L
= COV[711,/~\2] ’ 1;111
| dlogpia/pi2 T,
[ (L)dlo =
= Covpa, iy ) 0 o ” o D
| I
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Observe that

|
o T 1)61108 ‘Uzlr—ll/\n,

and

dlo / I 1 5
E1,0] srube Ef1,1] rn - ( )dlog a1 (Al— + /\21“ )
dlogpi2/pi2 Fu o+1 12

1 -
= () 1oz s

Therefore, the multi-product term is given by

I; 1 \. (I}
Cov, (dlogp(l ) I, )) - (a n 1)/\11 (r_u - 1)d10g#21-

Using the single product term’s result,

- (T
—ZAdlogyl dlog As = A (—1—1)dlogy21.
ieN — T
~—————Aggregate Labor Shares
Firm-level Markup

Finally, we obtain
ATFP = (1 - %)/\11 (E - 1)d10g Ua1.-
11

O

Proof of an Example with Taste Shocks in Subsection 2.2.4: The proof follows similar steps to
the markup shock case. Let us first calculate how the labor share responds to taste shocks.

Starting from the labor share expression:

1 ~ 1 1
L=4o ) ) T
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differentiating with respect to A; and using the fact that dA, = —dA;, we obtain

~ 1 ;\1I_‘1 ~il I_—‘1
dlogA; =dlogA |1l — —+ —=—]|=dloghAh —|=—-1
OB AL =08 1( 1, AT ) °8 M7 (Fu )

2 2+ 11 2

Next, to express the multi-product term as a covariance, we write:

r — dlogpi/p12 L
Covy, (d log pa,), I"_l) = Covpi, iy BpPnip ¢ l"rn
1) | dlogpi/p | | &
[ - Ldlog A I ]
= Covy, iy || ™" 0 |
I'p |

1 (L
T 1A1(F11 1)d10gP11/P12-

Combining these expressions with equation (5) yields the result.

Proof of Proposition 3

Lemma 2. The price equation with multi-product firms for some reference product r of firm i:

Pis¥ijg wyliy
dlog A/ u;i + E —dlogpjy + E ————dlogwy
ik C(ylfp) f C(y”p)

yirmcir

le ir = —
Clyp) BF

intermediate and factorprice

YigMCig )
+ - dlo ies
Z‘( C (i p) &P

SFr

other product from the same firm

Proof. By definition, we know
Ci(qipi) = Z (igMCig.
g

Total derivative:
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dlog (). gi.mc; dlo Z 1o MC;
g( Tis gyl logyl+z B1% s g)mcigdlogmcig,

dlog mci,

JigMCig q1gmclg
dlogg;, + dlog mc;,.
ZC (qp) B8 ZCZ-(%PZ-) B

and

Pig'Xi wyl;

i.f JighCig
LHS = —dlogAz-+Z BT dlog piy +Z ——dlogwy + ) ——~dlog gy
ig’ Ci(g zrp) Ci(qi,pi) Ci(qi pi)

Hence,

YigMCig Pjg i wyLif
————dlogmc;, = —dlog A; + 2 1o  + ————dlogwys. (21)
Z Ci(qop). B & JZ‘ Ci (%P) BPis zf: Cilanp) 2%

O

Pick some reference product r of firm i. Following Hall (1973), as a concequence of

cost minimization, the following condition holds:

meig _ 81—“1(‘2 (q) /94,
mcir ap? (9) /8%’

By taking the log difference and adjusting it with the markup, we get the following

formula:

JF (q) /9%) 22)

dlog (pig/pir) =dlog (‘uig/‘uir> + dlog(aFQ @) /90

This pins down the equilibrium prices with equation 11. For later proof, we define the
RHS of the equation 22 as ©;,.

dlogpig/pir = Ojg. (23)

Then, we proceed to the main proof.
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Proof. From Lemma 2 We know for one reference product :

GirMCir PipXjp Lif ( GigMcCig )
dlogmc;, = —dlog A; + dlo dlo wr+ dlog mci,,
Cilap) ° g Z Cilaip)” BPPT Z G (qz B ; Cilap) "
qirmCiy p]l’ 1f
dlogp;, = —dlog A; + dlog u; + ———dlo dlo w
(@ (%Pi) &p & st ]/Z Ci ( qi, p z) &P Z Ci (qu 1 &%r

qigMCig )
+ - dlog ..
Z‘( Ci(qi,pi) &Pis

QF#r

From equation 23, we have

d 108 Pig/pir =0,
Combining 21 with 23 yields

qirmciy GigMCig jpXjp wilig
dlogp;, = —dlog A; + dlog i, + dlogp;, + —— dlogw
Cilaip) oF & Z‘C(qz, p) Bl ZC( p) P ;ci(qi,pi) s

JigMCig )
+ E - dlo ioy
( Ci(qi,pi) EPis

girMCir HigMCig
dlogp;, = —dlog A; + dlog u; + Qi, ivdlo + Qi sdlogw; + ( )dlo i + O,
C. (4o p) &P g g u ; 3,jp4 108 Pjp Z g fAI0gWf gz;y, Ci (g5, p) [ gp g]
JigMCig
dlogp; = —dlog A; + dlog u; + Qi ivdlo + Qi rdlogw; + ( )@,-.
gp g g H ; P4 108 Pjp Z 5 fA 108 Wy gZ#, Ci(qnp)) ¢

Because ©;, = 0 if ¢ is n reference product, the price equations could be written as

qigmc;
dlogpi; = —dlog A; + dlog u; + Z Qg jedlog pig + Z Qe sdlog w; + {11 (-, (ﬁ)} O
]g g;ti’ 1 71

In vector notation

dlogp = (I — QNQXNQ)—l {_dlogANQXl + leg yNgxl + Q/fVQXTd logw + (1 _ C) o ®Ng><1}’

where o represents the Hadamard product and and C is a vector of NG X 1, with the
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following C; common elements for firm i € N,

JigMCig )
Ci = .
Z‘ (C (i, pi)

g#r

We know
dlogY = -b'dlogp.

dlogY = ~b"UNONG | —dlog A +dlog p + Qsdlogw + (1 - C) 0 O},
-y U {_dlogA +dlogu + Qfdlogw +(1-CQ)o ®Ng><1} .

subtracting ), Agdlog Ly from both sides yields

dlog TFP = Z Adlog A; — Z Aidlog i — Z Agdlog Ay,

ieN ieN fer
- Z [Z /\zgd log plg/pzr Z C ( )A d 10g ng/ptrJ
; <G gEr qi, pPi
Z /\lgd 10g ng/plr Z C lg /\ d 108 ng/plr) — /4 Z Sigd 108 pig/pir - Z Cigd 10g pig/pir s
g#r 8€G g#r
= ii Z Sigd log Pz‘g/Pir - Z Cigd log Pig/Pir ’
8€G 8€G
= A Z (s,-g - cig) dlog pl-g] ,
8cG
)
= yp
=A; Z Sig — ——Sig |d1og pig |,
§€G %ig
~ f‘l
= A Z Sig — r—igs,-g)dlog pl-g] ,
8cG
- I; I;
= Ai ]Esi dlo i lEsl. — |- ]Esi dlo i) . ),
[ &P )] lro‘»)l [ &P F(m]

A25



- T
= —/\Z‘COVSI. (d log Pi)s r—) .
(1/)

mc;
where c;, = ql(gq ng)
1 1

O

Proof of Proposition 4. Leti=1,...,N index N products. Each product i faces the isoelastic
demand
g = Dip;%, 0:,>1,

and its price satisfies p; = y; g—;, where y; > 0is a wedge (e.g. a markup). The cost function

N o
Cq, ..., qn) = %(Zq]_) o>0,

implies that
dlogp; = dlog[ui 3—;] =d log[g—;] (u; fixed).
To derive this marginal-cost term explicitly, define

((7+1)/U

S = (a+1>/a ZS
Yieiq

and let N
dlogq = Z Sijdlogg;.
A standard differentiation of the CET cost function shows that
1 -
dlogp; = S [dlogq,- - dlogq]. (24)

Since the shock is exclusively to product k, we have dlog Dy < 0 and dlogD; = 0 for

i # k. From the isoelastic demand,
dlogq; + O;dlogp; = dlogD;,
so fori # k,

dlogg;+ 0;dlogp; = 0, andfori=k, dloggr+ Ordlogpr = dlogD; <O0.
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Combining dlog g; + 0;dlog p; = 0 with (24) gives

0,|L(dlogq; - dlogq)| = —dlogg; (i #k),

which simplifies to
(0;+0)dlogg; = O;dlogqg (i #k).

An analogous expression arises for i = k, except that the right-hand side involves d log Dj:

(O +0)dloggr = odlogDy + Ordlogg.

Solving these equations jointly forces dlog g to have the same sign as dlog Dy. In par-
ticular, since dlog Dy < 0 by assumption, one can verify that the unique solution consis-

tent with marginal-cost equality implies

dlogq < 0.

Then for each i # k, the equation

(0;+0)dlogg; = 0;dlogqg

implies dlogg; < 0 (because both 0; + ¢ > 0 and 0; > 0). This confirms part (i) of the
proposition.
Finally, we substitute dlogg; < 0 and dlogg < 0 into (24) to find

dlogp; = %[dlogqi - dlogq].

Since |dloggq;| < |dlogq| for i # k but dlogq; and dlog g are both negative, the difference
in brackets is strictly positive, and hence dlogp; > 0. This establishes part (ii).

Thus for each product ¢ # k, we have dlogg, < 0 and dlogp, > 0 when dlog Dy <
0. O

Proof of Proposition 7. From the resource constraint,

Qig = Yig + Z Xjig-

jEN
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i Xji
dlogyi; = %dlog Jig — Z fdlog Xjig-
ig

i

From the cost minimization of joint production we know

Z Gigmcigd log gig = Z Xi jpP jptd 10g i jp + Z wyx;pdlog Li.
g jp

XijpPjp _ 1 qigpig £Xi f ‘
ZGDPdlogxl]p_;H cop? o8 i - ZG dlog L.

By cost minimization assumption,

igYi WrXi
dlogY = Zzgglfdl o= Y edlogLy
7

PigYig | qir I Wrls
CDP yigdlogqlg Z]‘ Vi —dlog xji ZGD dlogLy,

Pzz%g ir PigYig Xjig Lr
— GDP i, Y108 i Zg: GDP 18 ZGDPdIOgLf’

Pzgqlg 1 ngqlg )
ZGDPdl Zu =ppi1os 1g+IZ—GDPd10 gLy — ZGDPdlogLf,

g

- Z Alg #zg leg ng

Therefore,
dlogY Z 3 d log qiq
dlog iy <143 log pjg'”
dlogY dlog qi,
= /\i dlo joTT——.
dlog pigdlog jg ;; OB M dlog iy
dlogY dlog qlg
= Aiodlog u;.dlo
dlog pigd1og g Zg"; T
= Z Aigdlog gigd 1og i
ig
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Proof of Proposition 8. Define the firm-level Domar weight:
A=) Ag.
g

Let dlog u;; denote the exogenous change in the markup for product g of firm i. The
aggregate markup change for firm i is:

1
dlog u; = XZ/\igdlog Lig-
b

The weighted average markup change is:

dlogu = ZAidlogyi = Z Z/\igdlogyig.
i i g
Let dlog p;, be the change in the price of product g by firm i, and let dlog w be the change
in the wage rate.

The aggregate price index change is:
dlogp = Z Z Aig d1og pig.
g

The price change for product g of firm i is:

dlogpi, = dlog u; + dlogw + /\E (dlogyig —dlogyi),

where
o

K= .
o+1

Using the zero-profit condition and labor market clearing, we have:
dlogw = —dlog p.
Therefore, the aggregate price index change simplifies to:

dlogp = ZAidlogyi—dl()_gy =0,
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sodlogp = 0.
The change in the Domar weight of product g is:

dlog Ay = (1 — 0)dlog pig.

The welfare change is:
1 1
L= 5 Z Z Aigdlog gie dlog i, = —56 Z Z Aig d1log pig d1og .
i g i g
Our goal is to express L in terms of d log ;. Using dlogw = —dlog i, we have:

dlogpig = (dlog u; — dlog ) + Aﬁ(d log g — dlog ;).

Let
dlog ., = dlog u; — dlog ,
and
dlog Wi, = dlog g — dlog i,
then:

dlogpi, = dlog u, + %dl(fg Hig-

Substituting into the welfare change:
1 ~ K .~
L= —56 Z Zg: Aig (d log u; + Zdlog yig)dlog Wig-

This simplifies to:

1 ~ 1 ~ 2
L= _EG[Z‘ Aidlog p.dlog u; + KZ T Zg: Aigdlogyig].

1

Given the definitions of total variance and conditional variance, the welfare change

becomes:

1 o
L= —50 (Var;(d log ;) + —7 Z‘ Ai Varg (dlog tuig)] .
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From the law of total variance we know

Vara(dlog ;) = Vara(dlog ;) + Z A; Varg (dlog u;,).

Using this, we obtain

1 1
L= 50 Var,(dlog i) — 1 Z A Varg (dlog Hig)J :

Proof of Proposition 9. By factor share identity and given A; + A, = 1, we have:
dlogw = —(1 + il)dlogy.
Under the Cobb-Douglas specification:

dlog Ay = —dlog u
dlog /\21 =0
dlog Ap = 0.

The relative price adjustment equation and the wage equation give us:

1
dlogpn - dlogpu = —mdlogy
7\1d10gp11 + ;\zd logpu = —;\1d10g U.

From the second equation:

A (d log p12 — #dlog y) + Ayd logp1x = —;\1d10g u

~ 1 ~
dlogp12—/\10+1dlogy =—-Mdlogu
O =~
dlogpi = g 1/\1dlogy.

Using the relative price adjustment equation:

1
dlogp1 = dlogpia — md log u
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0 = 1
= grrdlogn — omdlogy
_ 1+Oi1
= ( 1 )dlogy.

For dlog p:

dlogpx = dlogp +dlogu
_ 1+O/~\1
B o+1

)dlogy+dlogy.

The quantity adjustments follow from the factor share changes:

d log fhl = d log AH - d log pll

+(7i1
| )dlogy.

= —allogy+(1

dlog qi> = dlog Arp — dlog pi
o
o+1

O =~
G+1A1d10gy.

=0+ Adlog

leg gr1 = dlog Ap1 — dlogp21

= 0—(—(1+m\1)dlogy+dlogy)

o+1

_ (1+O’;\1

1 )dlogy—dlogp.

The social loss is given by:

(ﬂld log g11dlog i + Ayd log giod log u + Ajdlog gxid log [J)
< 1+l ~ o -
(Al(_1+ o+1 )-l_/\20+1)\1

~ 1+G/~\1
+A1( o+1

L=

NI~ N -

- 1)) (dlog p)’

A32



o+1

o o\~
a+1+(o+1)A1)+
o

) (dlog u)*.
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